These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
385 related items for PubMed ID: 23449207
1. Application of solution-processed metal oxide layers as charge transport layers for CdSe/ZnS quantum-dot LEDs. Nguyen HT, Nguyen ND, Lee S. Nanotechnology; 2013 Mar 22; 24(11):115201. PubMed ID: 23449207 [Abstract] [Full Text] [Related]
2. Over 40 cd/A efficient green quantum dot electroluminescent device comprising uniquely large-sized quantum dots. Lee KH, Lee JH, Kang HD, Park B, Kwon Y, Ko H, Lee C, Lee J, Yang H. ACS Nano; 2014 May 27; 8(5):4893-901. PubMed ID: 24758609 [Abstract] [Full Text] [Related]
3. Efficient inverted quantum-dot light-emitting devices with TiO2/ZnO bilayer as the electron contact layer. Xu W, Ji W, Jing P, Yuan X, Wang YA, Xiang W, Zhao J. Opt Lett; 2014 Feb 01; 39(3):426-9. PubMed ID: 24487831 [Abstract] [Full Text] [Related]
4. Stable, efficient, and all-solution-processed quantum dot light-emitting diodes with double-sided metal oxide nanoparticle charge transport layers. Yang X, Ma Y, Mutlugun E, Zhao Y, Leck KS, Tan ST, Demir HV, Zhang Q, Du H, Sun XW. ACS Appl Mater Interfaces; 2014 Jan 08; 6(1):495-9. PubMed ID: 24313560 [Abstract] [Full Text] [Related]
5. Enhanced Luminance of CdSe/ZnS Quantum Dots Light-Emitting Diodes Using ZnO-Oleic Acid/ZnO Quantum Dots Double Electron Transport Layer. Lee DY, Kim HH, Noh JH, Lim KY, Park D, Lee IH, Choi WK. Nanomaterials (Basel); 2022 Jun 14; 12(12):. PubMed ID: 35745377 [Abstract] [Full Text] [Related]
6. Highly efficient, color-pure, color-stable blue quantum dot light-emitting devices. Lee KH, Lee JH, Song WS, Ko H, Lee C, Lee JH, Yang H. ACS Nano; 2013 Aug 27; 7(8):7295-302. PubMed ID: 23855967 [Abstract] [Full Text] [Related]
7. Li and Mg Co-Doped Zinc Oxide Electron Transporting Layer for Highly Efficient Quantum Dot Light-Emitting Diodes. Kim HM, Cho S, Kim J, Shin H, Jang J. ACS Appl Mater Interfaces; 2018 Jul 18; 10(28):24028-24036. PubMed ID: 29952540 [Abstract] [Full Text] [Related]
8. Multi-color colloidal quantum dot based light emitting diodes micropatterned on silicon hole transporting layers. Gopal A, Hoshino K, Kim S, Zhang X. Nanotechnology; 2009 Jun 10; 20(23):235201. PubMed ID: 19448295 [Abstract] [Full Text] [Related]
9. High Efficiency Quantum Dot Light-Emitting Diode by Solution Printing of Zinc Oxide Nanoparticles. Park DY, Lim JH, Ha MY, Moon DG. J Nanosci Nanotechnol; 2020 Jul 01; 20(7):4454-4457. PubMed ID: 31968495 [Abstract] [Full Text] [Related]
10. Highly efficient blue-green quantum dot light-emitting diodes using stable low-cadmium quaternary-alloy ZnCdSSe/ZnS core/shell nanocrystals. Shen H, Wang S, Wang H, Niu J, Qian L, Yang Y, Titov A, Hyvonen J, Zheng Y, Li LS. ACS Appl Mater Interfaces; 2013 May 22; 5(10):4260-5. PubMed ID: 23633527 [Abstract] [Full Text] [Related]
11. Inverted CdSe/CdS/ZnS quantum dot light emitting devices with titanium dioxide as an electron-injection contact. Ji W, Jing P, Zhao J, Liu X, Wang A, Li H. Nanoscale; 2013 Apr 21; 5(8):3474-80. PubMed ID: 23474645 [Abstract] [Full Text] [Related]
12. Charge transport in light emitting devices based on colloidal quantum dots and a solution-processed nickel oxide layer. Nguyen HT, Jeong H, Park JY, Ahn YH, Lee S. ACS Appl Mater Interfaces; 2014 May 28; 6(10):7286-91. PubMed ID: 24807847 [Abstract] [Full Text] [Related]
13. Al atomistic surface modulation on colloidal gradient quantum dots for high-brightness and stable light-emitting devices. Lee JS, Kang BH, Kim SW, Kwon JB, Kim OS, Byun YT, Kwon DH, Bae JH, Kang SW. Sci Rep; 2019 Apr 23; 9(1):6357. PubMed ID: 31015572 [Abstract] [Full Text] [Related]
14. Soft contact transplanted nanocrystal quantum dots for light-emitting diodes: effect of surface energy on device performance. Cho H, Kwak J, Lim J, Park M, Lee D, Bae WK, Kim YS, Char K, Lee S, Lee C. ACS Appl Mater Interfaces; 2015 May 27; 7(20):10828-33. PubMed ID: 25941770 [Abstract] [Full Text] [Related]
15. Selection of metal oxide charge transport layers for colloidal quantum dot LEDs. Wood V, Panzer MJ, Halpert JE, Caruge JM, Bawendi MG, Bulović V. ACS Nano; 2009 Nov 24; 3(11):3581-6. PubMed ID: 19886643 [Abstract] [Full Text] [Related]
16. Structural and Optical Properties of NiO/ZnS Core-Shell Nanostructures for Efficient Quantum Dot Light-Emitting Diodes. Kim J, Kim J. Materials (Basel); 2023 Jul 20; 16(14):. PubMed ID: 37512380 [Abstract] [Full Text] [Related]
17. All-solution-processed, multilayered CuInS₂/ZnS colloidal quantum-dot-based electroluminescent device. Kim JH, Yang H. Opt Lett; 2014 Sep 01; 39(17):5002-5. PubMed ID: 25166059 [Abstract] [Full Text] [Related]
18. Polyethylenimine-ethoxylated dual interfacial layers for highly efficient and all-solution-processed inverted quantum dot light-emitting diodes. Lee W, Kim B, Choi Y, Chae H. Opt Express; 2020 Nov 09; 28(23):33971-33981. PubMed ID: 33182875 [Abstract] [Full Text] [Related]
19. Influence of Shell Thickness on the Performance of NiO-Based All-Inorganic Quantum Dot Light-Emitting Diodes. Wang T, Zhu B, Wang S, Yuan Q, Zhang H, Kang Z, Wang R, Zhang H, Ji W. ACS Appl Mater Interfaces; 2018 May 02; 10(17):14894-14900. PubMed ID: 29637767 [Abstract] [Full Text] [Related]
20. Light-emitting diodes based on solution-processed nontoxic quantum dots: oxides as carrier-transport layers and introducing molybdenum oxide nanoparticles as a hole-inject layer. Bhaumik S, Pal AJ. ACS Appl Mater Interfaces; 2014 Jul 23; 6(14):11348-56. PubMed ID: 24983915 [Abstract] [Full Text] [Related] Page: [Next] [New Search]