These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
271 related items for PubMed ID: 23454189
21. Progress in brain penetration evaluation in drug discovery and development. Liu X, Chen C, Smith BJ. J Pharmacol Exp Ther; 2008 May; 325(2):349-56. PubMed ID: 18203948 [Abstract] [Full Text] [Related]
22. Central nervous system distribution kinetics of indinavir in rats. Hamidi M. J Pharm Pharmacol; 2007 Aug; 59(8):1077-85. PubMed ID: 17725849 [Abstract] [Full Text] [Related]
23. Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Löscher W, Potschka H. Prog Neurobiol; 2005 May; 76(1):22-76. PubMed ID: 16011870 [Abstract] [Full Text] [Related]
24. Active-site concentrations of chemicals - are they a better predictor of effect than plasma/organ/tissue concentrations? Hammarlund-Udenaes M. Basic Clin Pharmacol Toxicol; 2010 Mar; 106(3):215-20. PubMed ID: 20050843 [Abstract] [Full Text] [Related]
25. P-glycoprotein contributes to the blood-brain, but not blood-cerebrospinal fluid, barrier in a spontaneous canine p-glycoprotein knockout model. Mealey KL, Greene S, Bagley R, Gay J, Tucker R, Gavin P, Schmidt K, Nelson F. Drug Metab Dispos; 2008 Jun; 36(6):1073-9. PubMed ID: 18332085 [Abstract] [Full Text] [Related]
26. Species comparison of in vivo P-glycoprotein-mediated brain efflux using mdr1a-deficient rats and mice. Bundgaard C, Jensen CJ, Garmer M. Drug Metab Dispos; 2012 Mar; 40(3):461-6. PubMed ID: 22112383 [Abstract] [Full Text] [Related]
27. An evaluation of using rat-derived single-dose neuropharmacokinetic parameters to project accurately large animal unbound brain drug concentrations. Doran AC, Osgood SM, Mancuso JY, Shaffer CL. Drug Metab Dispos; 2012 Nov; 40(11):2162-73. PubMed ID: 22899853 [Abstract] [Full Text] [Related]
28. Inhibition of P-glycoprotein activity at the primate blood-brain barrier increases the distribution of nelfinavir into the brain but not into the cerebrospinal fluid. Kaddoumi A, Choi SU, Kinman L, Whittington D, Tsai CC, Ho RJ, Anderson BD, Unadkat JD. Drug Metab Dispos; 2007 Sep; 35(9):1459-62. PubMed ID: 17591677 [Abstract] [Full Text] [Related]
29. Blood-brain barrier in vitro models as tools in drug discovery: assessment of the transport ranking of antihistaminic drugs. Neuhaus W, Mandikova J, Pawlowitsch R, Linz B, Bennani-Baiti B, Lauer R, Lachmann B, Noe CR. Pharmazie; 2012 May; 67(5):432-9. PubMed ID: 22764578 [Abstract] [Full Text] [Related]
30. Structure-brain exposure relationships in rat and human using a novel data set of unbound drug concentrations in brain interstitial and cerebrospinal fluids. Fridén M, Winiwarter S, Jerndal G, Bengtsson O, Wan H, Bredberg U, Hammarlund-Udenaes M, Antonsson M. J Med Chem; 2009 Oct 22; 52(20):6233-43. PubMed ID: 19764786 [Abstract] [Full Text] [Related]
31. Steady-state brain concentrations of antihistamines in rats: interplay of membrane permeability, P-glycoprotein efflux and plasma protein binding. Mahar Doan KM, Wring SA, Shampine LJ, Jordan KH, Bishop JP, Kratz J, Yang E, Serabjit-Singh CJ, Adkison KK, Polli JW. Pharmacology; 2004 Oct 22; 72(2):92-8. PubMed ID: 15331914 [Abstract] [Full Text] [Related]
32. Innovative in vitro method to predict rate and extent of drug delivery to the brain across the blood-brain barrier. Mangas-Sanjuan V, González-Álvarez I, González-Álvarez M, Casabó VG, Bermejo M. Mol Pharm; 2013 Oct 07; 10(10):3822-31. PubMed ID: 23977999 [Abstract] [Full Text] [Related]
33. In vitro to in vivo comparison of the substrate characteristics of sorafenib tosylate toward P-glycoprotein. Gnoth MJ, Sandmann S, Engel K, Radtke M. Drug Metab Dispos; 2010 Aug 07; 38(8):1341-6. PubMed ID: 20413726 [Abstract] [Full Text] [Related]
34. A physiologically based modeling strategy during preclinical CNS drug development. Ball K, Bouzom F, Scherrmann JM, Walther B, Declèves X. Mol Pharm; 2014 Mar 03; 11(3):836-48. PubMed ID: 24446829 [Abstract] [Full Text] [Related]
35. Pharmacokinetics and pharmacodynamics of alfentanil in P-glycoprotein-competent and P-glycoprotein-deficient mice: P-glycoprotein efflux alters alfentanil brain disposition and antinociception. Kalvass JC, Olson ER, Pollack GM. Drug Metab Dispos; 2007 Mar 03; 35(3):455-9. PubMed ID: 17178769 [Abstract] [Full Text] [Related]
36. In vitro P-glycoprotein efflux inhibition by atypical antipsychotics is in vivo nicely reflected by pharmacodynamic but less by pharmacokinetic changes. Schmitt U, Kirschbaum KM, Poller B, Kusch-Poddar M, Drewe J, Hiemke C, Gutmann H. Pharmacol Biochem Behav; 2012 Aug 03; 102(2):312-20. PubMed ID: 22525746 [Abstract] [Full Text] [Related]
37. CSF as a surrogate for assessing CNS exposure: an industrial perspective. Lin JH. Curr Drug Metab; 2008 Jan 03; 9(1):46-59. PubMed ID: 18220571 [Abstract] [Full Text] [Related]
38. Demystifying brain penetration in central nervous system drug discovery. Miniperspective. Di L, Rong H, Feng B. J Med Chem; 2013 Jan 10; 56(1):2-12. PubMed ID: 23075026 [Abstract] [Full Text] [Related]
39. Blood-brain barrier permeation models: discriminating between potential CNS and non-CNS drugs including P-glycoprotein substrates. Adenot M, Lahana R. J Chem Inf Comput Sci; 2004 Jan 10; 44(1):239-48. PubMed ID: 14741033 [Abstract] [Full Text] [Related]
40. Pluronic P85 enhances the delivery of digoxin to the brain: in vitro and in vivo studies. Batrakova EV, Miller DW, Li S, Alakhov VY, Kabanov AV, Elmquist WF. J Pharmacol Exp Ther; 2001 Feb 10; 296(2):551-7. PubMed ID: 11160643 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]