These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


260 related items for PubMed ID: 23454365

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Effect of X-ray irradiation on the elastic strain evolution in the mineral phase of bovine bone under creep and load-free conditions.
    Deymier-Black AC, Singhal A, Almer JD, Dunand DC.
    Acta Biomater; 2013 Feb; 9(2):5305-12. PubMed ID: 22871638
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Evolution of load transfer between hydroxyapatite and collagen during creep deformation of bone.
    Deymier-Black AC, Yuan F, Singhal A, Almer JD, Brinson LC, Dunand DC.
    Acta Biomater; 2012 Jan; 8(1):253-61. PubMed ID: 21878399
    [Abstract] [Full Text] [Related]

  • 5. Synchrotron X-ray diffraction study of load partitioning during elastic deformation of bovine dentin.
    Deymier-Black AC, Almer JD, Stock SR, Haeffner DR, Dunand DC.
    Acta Biomater; 2010 Jun; 6(6):2172-80. PubMed ID: 19925891
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Variability in the nanoscale deformation of hydroxyapatite during compressive loading in bovine bone.
    Singhal A, Almer JD, Dunand DC.
    Acta Biomater; 2012 Jul; 8(7):2747-58. PubMed ID: 22465576
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Post-yield relaxation behavior of bovine cancellous bone.
    Burgers TA, Lakes RS, García-Rodríguez S, Piller GR, Ploeg HL.
    J Biomech; 2009 Dec 11; 42(16):2728-33. PubMed ID: 19765712
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Lattice strains and load partitioning in bovine trabecular bone.
    Akhtar R, Daymond MR, Almer JD, Mummery PM.
    Acta Biomater; 2011 Feb 11; 7(2):716-23. PubMed ID: 20951842
    [Abstract] [Full Text] [Related]

  • 17. Viscoelasticity of Tendons Under Transverse Compression.
    Paul Buckley C, Samuel Salisbury ST, Zavatsky AB.
    J Biomech Eng; 2016 Oct 01; 138(10):. PubMed ID: 27496279
    [Abstract] [Full Text] [Related]

  • 18. A new model to simulate the elastic properties of mineralized collagen fibril.
    Yuan F, Stock SR, Haeffner DR, Almer JD, Dunand DC, Brinson LC.
    Biomech Model Mechanobiol; 2011 Apr 01; 10(2):147-60. PubMed ID: 20521160
    [Abstract] [Full Text] [Related]

  • 19. Dynamic creep behavior of acrylic bone cement.
    Verdonschot N, Huiskes R.
    J Biomed Mater Res; 1995 May 01; 29(5):575-81. PubMed ID: 7622542
    [Abstract] [Full Text] [Related]

  • 20. Fluid pressure driven fibril reinforcement in creep and relaxation tests of articular cartilage.
    Li LP, Korhonen RK, Iivarinen J, Jurvelin JS, Herzog W.
    Med Eng Phys; 2008 Mar 01; 30(2):182-9. PubMed ID: 17524700
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.