These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
177 related items for PubMed ID: 2345443
1. Effects of friction on the unconfined compressive response of articular cartilage: a finite element analysis. Spilker RL, Suh JK, Mow VC. J Biomech Eng; 1990 May; 112(2):138-46. PubMed ID: 2345443 [Abstract] [Full Text] [Related]
2. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes. Spilker RL, de Almeida ES, Donzelli PS. Crit Rev Biomed Eng; 1992 May; 20(3-4):279-313. PubMed ID: 1478094 [Abstract] [Full Text] [Related]
3. Application of the u-p finite element method to the study of articular cartilage. Wayne JS, Woo SL, Kwan MK. J Biomech Eng; 1991 Nov; 113(4):397-403. PubMed ID: 1762436 [Abstract] [Full Text] [Related]
4. A finite element analysis of the indentation stress-relaxation response of linear biphasic articular cartilage. Spilker RL, Suh JK, Mow VC. J Biomech Eng; 1992 May; 114(2):191-201. PubMed ID: 1602762 [Abstract] [Full Text] [Related]
5. Finite element simulation of location- and time-dependent mechanical behavior of chondrocytes in unconfined compression tests. Wu JZ, Herzog W. Ann Biomed Eng; 2000 Mar; 28(3):318-30. PubMed ID: 10784096 [Abstract] [Full Text] [Related]
9. Non-linear model for compression tests on articular cartilage. Grillo A, Guaily A, Giverso C, Federico S. J Biomech Eng; 2015 Jul; 137(7):. PubMed ID: 25840005 [Abstract] [Full Text] [Related]
10. An analysis of the unconfined compression of articular cartilage. Armstrong CG, Lai WM, Mow VC. J Biomech Eng; 1984 May; 106(2):165-73. PubMed ID: 6738022 [Abstract] [Full Text] [Related]
12. A Lagrange multiplier mixed finite element formulation for three-dimensional contact of biphasic tissues. Yang T, Spilker RL. J Biomech Eng; 2007 Jun; 129(3):457-71. PubMed ID: 17536914 [Abstract] [Full Text] [Related]
13. Analysis of effects of friction on the deformation behavior of soft tissues in unconfined compression tests. Wu JZ, Dong RG, Schopper AW. J Biomech; 2004 Jan; 37(1):147-55. PubMed ID: 14672579 [Abstract] [Full Text] [Related]
14. Biphasic poroviscoelastic simulation of the unconfined compression of articular cartilage: I--Simultaneous prediction of reaction force and lateral displacement. DiSilvestro MR, Zhu Q, Wong M, Jurvelin JS, Suh JK. J Biomech Eng; 2001 Apr; 123(2):191-7. PubMed ID: 11340881 [Abstract] [Full Text] [Related]
15. A Finite Element Algorithm for Large Deformation Biphasic Frictional Contact Between Porous-Permeable Hydrated Soft Tissues. Zimmerman BK, Maas SA, Weiss JA, Ateshian GA. J Biomech Eng; 2022 Feb 01; 144(2):. PubMed ID: 34382640 [Abstract] [Full Text] [Related]
16. Elimination of the friction effects in unconfined compression tests of biomaterials and soft tissues. Wu JZ, Dong RG, Smutz WP. Proc Inst Mech Eng H; 2004 Feb 01; 218(1):35-40. PubMed ID: 14982344 [Abstract] [Full Text] [Related]
17. A theoretical solution for the frictionless rolling contact of cylindrical biphasic articular cartilage layers. Ateshian GA, Wang H. J Biomech; 1995 Nov 01; 28(11):1341-55. PubMed ID: 8522547 [Abstract] [Full Text] [Related]