These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
125 related items for PubMed ID: 23462443
1. Effect of hopping frequency on bilateral differences in leg stiffness. Hobara H, Inoue K, Kanosue K. J Appl Biomech; 2013 Feb; 29(1):55-60. PubMed ID: 23462443 [Abstract] [Full Text] [Related]
2. Differences in spring-mass characteristics between one- and two-legged hopping. Hobara H, Kobayashi Y, Kato E, Ogata T. J Appl Biomech; 2013 Dec; 29(6):785-9. PubMed ID: 23271206 [Abstract] [Full Text] [Related]
3. Leg stiffness adjustment during hopping at different intensities and frequencies. Mrdakovic V, Ilic D, Vulovic R, Matic M, Jankovic N, Filipovic N. Acta Bioeng Biomech; 2014 Dec; 16(3):69-76. PubMed ID: 25308379 [Abstract] [Full Text] [Related]
4. Acute effects of static stretching on leg-spring behavior during hopping. Hobara H, Inoue K, Kato E, Kanosue K. Eur J Appl Physiol; 2011 Sep; 111(9):2115-21. PubMed ID: 21287195 [Abstract] [Full Text] [Related]
5. Leg and joint stiffness in human hopping. Kuitunen S, Ogiso K, Komi PV. Scand J Med Sci Sports; 2011 Dec; 21(6):e159-67. PubMed ID: 22126723 [Abstract] [Full Text] [Related]
6. Leg stiffness adjustment for a range of hopping frequencies in humans. Hobara H, Inoue K, Muraoka T, Omuro K, Sakamoto M, Kanosue K. J Biomech; 2010 Feb 10; 43(3):506-11. PubMed ID: 19879582 [Abstract] [Full Text] [Related]
7. A comparison of computation methods for leg stiffness during hopping. Hobara H, Inoue K, Kobayashi Y, Ogata T. J Appl Biomech; 2014 Feb 10; 30(1):154-9. PubMed ID: 24676522 [Abstract] [Full Text] [Related]
8. Leg stiffness of older and younger individuals over a range of hopping frequencies. Hobara H, Kobayashi Y, Yoshida E, Mochimaru M. J Electromyogr Kinesiol; 2015 Apr 10; 25(2):305-9. PubMed ID: 25716326 [Abstract] [Full Text] [Related]
9. Sex differences in relationship between passive ankle stiffness and leg stiffness during hopping. Hobara H, Kato E, Kobayashi Y, Ogata T. J Biomech; 2012 Nov 15; 45(16):2750-4. PubMed ID: 23051683 [Abstract] [Full Text] [Related]
10. Hopping with degressive spring stiffness in a full-leg exoskeleton lowers metabolic cost compared with progressive spring stiffness and hopping without assistance. Allen SP, Grabowski AM. J Appl Physiol (1985); 2019 Aug 01; 127(2):520-530. PubMed ID: 31219770 [Abstract] [Full Text] [Related]
11. A Comparison of Vertical Stiffness Values Calculated from Different Measures of Center of Mass Displacement in Single-Leg Hopping. Mudie KL, Gupta A, Green S, Hobara H, Clothier PJ. J Appl Biomech; 2017 Feb 01; 33(1):39-47. PubMed ID: 27705055 [Abstract] [Full Text] [Related]
12. Gender differences in active musculoskeletal stiffness. Part II. Quantification of leg stiffness during functional hopping tasks. Granata KP, Padua DA, Wilson SE. J Electromyogr Kinesiol; 2002 Apr 01; 12(2):127-35. PubMed ID: 11955985 [Abstract] [Full Text] [Related]
13. The interday reliability of ankle, knee, leg, and vertical musculoskeletal stiffness during hopping and overground running. Joseph CW, Bradshaw EJ, Kemp J, Clark RA. J Appl Biomech; 2013 Aug 01; 29(4):386-94. PubMed ID: 22923423 [Abstract] [Full Text] [Related]
15. Vertical stiffness and center-of-mass movement in children and adults during single-leg hopping. Beerse M, Wu J. J Biomech; 2016 Oct 03; 49(14):3306-3312. PubMed ID: 27575778 [Abstract] [Full Text] [Related]
16. Estimates of Running Ground Reaction Force Parameters from Motion Analysis. Pavei G, Seminati E, Storniolo JL, Peyré-Tartaruga LA. J Appl Biomech; 2017 Feb 03; 33(1):69-75. PubMed ID: 27705058 [Abstract] [Full Text] [Related]
17. Determinant of leg stiffness during hopping is frequency-dependent. Hobara H, Inoue K, Omuro K, Muraoka T, Kanosue K. Eur J Appl Physiol; 2011 Sep 03; 111(9):2195-201. PubMed ID: 21318314 [Abstract] [Full Text] [Related]
18. Linear center-of-mass dynamics emerge from non-linear leg-spring properties in human hopping. Riese S, Seyfarth A, Grimmer S. J Biomech; 2013 Sep 03; 46(13):2207-12. PubMed ID: 23880438 [Abstract] [Full Text] [Related]
19. Neuromechanical stabilization of leg length and orientation through interjoint compensation during human hopping. Auyang AG, Yen JT, Chang YH. Exp Brain Res; 2009 Jan 03; 192(2):253-64. PubMed ID: 18839158 [Abstract] [Full Text] [Related]