These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
260 related items for PubMed ID: 23466477
1. Thermostable trypsin conjugates immobilized to biogenic magnetite show a high operational stability and remarkable reusability for protein digestion. Pečová M, Šebela M, Marková Z, Poláková K, Čuda J, Šafářová K, Zbořil R. Nanotechnology; 2013 Mar 29; 24(12):125102. PubMed ID: 23466477 [Abstract] [Full Text] [Related]
2. Characterization and immobilization of trypsin on tannic acid modified Fe3O4 nanoparticles. Atacan K, Özacar M. Colloids Surf B Biointerfaces; 2015 Apr 01; 128():227-236. PubMed ID: 25686792 [Abstract] [Full Text] [Related]
3. Hydrophilic immobilized trypsin reactor with magnetic graphene oxide as support for high efficient proteome digestion. Jiang B, Yang K, Zhao Q, Wu Q, Liang Z, Zhang L, Peng X, Zhang Y. J Chromatogr A; 2012 Sep 07; 1254():8-13. PubMed ID: 22871380 [Abstract] [Full Text] [Related]
4. Surface modification of magnetite nanoparticles using gluconic acid and their application in immobilized lipase. Sui Y, Cui Y, Nie Y, Xia GM, Sun GX, Han JT. Colloids Surf B Biointerfaces; 2012 May 01; 93():24-8. PubMed ID: 22225941 [Abstract] [Full Text] [Related]
5. Covalent immobilization of trypsin onto modified magnetite nanoparticles and its application for casein digestion. Atacan K, Çakıroğlu B, Özacar M. Int J Biol Macromol; 2017 Apr 01; 97():148-155. PubMed ID: 28065752 [Abstract] [Full Text] [Related]
6. Efficient protein digestion using immobilized trypsin onto tannin modified Fe3O4 magnetic nanoparticles. Atacan K, Çakıroğlu B, Özacar M. Colloids Surf B Biointerfaces; 2017 Aug 01; 156():9-18. PubMed ID: 28499203 [Abstract] [Full Text] [Related]
7. Trypsin immobilization on hairy polymer chains hybrid magnetic nanoparticles for ultra fast, highly efficient proteome digestion, facile 18O labeling and absolute protein quantification. Qin W, Song Z, Fan C, Zhang W, Cai Y, Zhang Y, Qian X. Anal Chem; 2012 Apr 03; 84(7):3138-44. PubMed ID: 22413971 [Abstract] [Full Text] [Related]
8. Novel superparamagnetic sanoparticles for trypsin immobilization and the application for efficient proteolysis. Sun J, Hu K, Liu Y, Pan Y, Yang Y. J Chromatogr B Analyt Technol Biomed Life Sci; 2013 Dec 30; 942-943():9-14. PubMed ID: 24211332 [Abstract] [Full Text] [Related]
9. Improvement of the stability and activity of immobilized trypsin on modified Fe3O4 magnetic nanoparticles for hydrolysis of bovine serum albumin and its application in the bovine milk. Atacan K, Çakıroğlu B, Özacar M. Food Chem; 2016 Dec 01; 212():460-8. PubMed ID: 27374556 [Abstract] [Full Text] [Related]
10. Immobilized trypsin on hydrophobic cellulose decorated nanoparticles shows good stability and reusability for protein digestion. Sun X, Cai X, Wang RQ, Xiao J. Anal Biochem; 2015 May 15; 477():21-7. PubMed ID: 25700866 [Abstract] [Full Text] [Related]
11. Preparation and properties of thermoresponsive bioconjugates of trypsin. Raghava S, Mondal K, Gupta MN, Pareek P, Kuckling D. Artif Cells Blood Substit Immobil Biotechnol; 2006 May 15; 34(3):323-36. PubMed ID: 16809133 [Abstract] [Full Text] [Related]
12. Stability and activity of immobilized trypsin on carboxymethyl chitosan-functionalized magnetic nanoparticles cross-linked with carbodiimide and glutaraldehyde. Sun J, Yang L, Jiang M, Shi Y, Xu B, Ma HL. J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Jun 01; 1054():57-63. PubMed ID: 28419926 [Abstract] [Full Text] [Related]
13. Using high-concentration trypsin-immobilized magnetic nanoparticles for rapid in situ protein digestion at elevated temperature. Jeng J, Lin MF, Cheng FY, Yeh CS, Shiea J. Rapid Commun Mass Spectrom; 2007 Jun 01; 21(18):3060-8. PubMed ID: 17705254 [Abstract] [Full Text] [Related]
14. Immobilization of trypsin via graphene oxide-silica composite for efficient microchip proteolysis. Bao H, Zhang L, Chen G. J Chromatogr A; 2013 Oct 04; 1310():74-81. PubMed ID: 23998335 [Abstract] [Full Text] [Related]
15. Immobilization of trypsin onto Fe3O4@SiO2 -NH2 and study of its activity and stability. Aslani E, Abri A, Pazhang M. Colloids Surf B Biointerfaces; 2018 Oct 01; 170():553-562. PubMed ID: 29975903 [Abstract] [Full Text] [Related]
16. Immobilization of bovine catalase onto magnetic nanoparticles. Doğaç Yİ, Teke M. Prep Biochem Biotechnol; 2013 Oct 01; 43(8):750-65. PubMed ID: 23876136 [Abstract] [Full Text] [Related]
17. A capillary monolithic trypsin reactor for efficient protein digestion in online and offline coupling to ESI and MALDI mass spectrometry. Spross J, Sinz A. Anal Chem; 2010 Feb 15; 82(4):1434-43. PubMed ID: 20099804 [Abstract] [Full Text] [Related]
18. Covalent immobilization of porcine pancreatic lipase on carboxyl-activated magnetic nanoparticles: characterization and application for enzymatic inhibition assays. Zhu YT, Ren XY, Liu YM, Wei Y, Qing LS, Liao X. Mater Sci Eng C Mater Biol Appl; 2014 May 01; 38():278-85. PubMed ID: 24656379 [Abstract] [Full Text] [Related]
19. Biopolymers conjugated with magnetite as support materials for trypsin immobilization and protein digestion. Zdarta J, Antecka K, Jędrzak A, Synoradzki K, Łuczak M, Jesionowski T. Colloids Surf B Biointerfaces; 2018 Sep 01; 169():118-125. PubMed ID: 29758537 [Abstract] [Full Text] [Related]
20. A bifunctional monolithic column for combined protein preconcentration and digestion for high throughput proteomics research. Zhang K, Wu S, Tang X, Kaiser NK, Bruce JE. J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Apr 15; 849(1-2):223-30. PubMed ID: 17150420 [Abstract] [Full Text] [Related] Page: [Next] [New Search]