These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


488 related items for PubMed ID: 23468911

  • 1. Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae.
    Kim SR, Skerker JM, Kang W, Lesmana A, Wei N, Arkin AP, Jin YS.
    PLoS One; 2013; 8(2):e57048. PubMed ID: 23468911
    [Abstract] [Full Text] [Related]

  • 2. High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae.
    Kim SR, Ha SJ, Kong II, Jin YS.
    Metab Eng; 2012 Jul; 14(4):336-43. PubMed ID: 22521925
    [Abstract] [Full Text] [Related]

  • 3. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis.
    Kim SR, Kwee NR, Kim H, Jin YS.
    FEMS Yeast Res; 2013 May; 13(3):312-21. PubMed ID: 23398717
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae.
    Lee SH, Kodaki T, Park YC, Seo JH.
    J Biotechnol; 2012 Apr 30; 158(4):184-91. PubMed ID: 21699927
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate.
    Johansson B, Christensson C, Hobley T, Hahn-Hägerdal B.
    Appl Environ Microbiol; 2001 Sep 30; 67(9):4249-55. PubMed ID: 11526030
    [Abstract] [Full Text] [Related]

  • 12. Engineering industrial Saccharomyces cerevisiae strains for xylose fermentation and comparison for switchgrass conversion.
    Hector RE, Dien BS, Cotta MA, Qureshi N.
    J Ind Microbiol Biotechnol; 2011 Sep 30; 38(9):1193-202. PubMed ID: 21107642
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism.
    Kim SR, Park YC, Jin YS, Seo JH.
    Biotechnol Adv; 2013 Nov 30; 31(6):851-61. PubMed ID: 23524005
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae.
    Karhumaa K, Fromanger R, Hahn-Hägerdal B, Gorwa-Grauslund MF.
    Appl Microbiol Biotechnol; 2007 Jan 30; 73(5):1039-46. PubMed ID: 16977466
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 25.