These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


233 related items for PubMed ID: 23470663

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Comparative NMR studies of diffusional water permeability of red blood cells from different species: XV. Agile wallaby (Macropus agilis), red-necked wallaby (Macropus rufogriseus) and Goodfellow's tree kangaroo (Dendrolagus goodfellowi).
    Benga G, Chapman BE, Kuchel PW.
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Sep; 154(1):105-9. PubMed ID: 19463965
    [Abstract] [Full Text] [Related]

  • 5. Transport characteristics of urea transporter-B.
    Yang B.
    Subcell Biochem; 2014 Sep; 73():127-35. PubMed ID: 25298342
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Separative pathways for urea and water, and for chloride in chicken erythrocytes.
    Brahm J, Wieth JO.
    J Physiol; 1977 Apr; 266(3):727-49. PubMed ID: 17003
    [Abstract] [Full Text] [Related]

  • 8. Analysis of double knockout mice lacking aquaporin-1 and urea transporter UT-B. Evidence for UT-B-facilitated water transport in erythrocytes.
    Yang B, Verkman AS.
    J Biol Chem; 2002 Sep 27; 277(39):36782-6. PubMed ID: 12133842
    [Abstract] [Full Text] [Related]

  • 9. Chloride transport by self-exchange and by KCl salt diffusion in gramicidin-treated red blood cells.
    Cass A, Dalmark M.
    Acta Physiol Scand; 1979 Nov 27; 107(3):193-203. PubMed ID: 94237
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Diffusional water permeability of mammalian red blood cells.
    Benga G, Borza T.
    Comp Biochem Physiol B Biochem Mol Biol; 1995 Dec 27; 112(4):653-9. PubMed ID: 8590380
    [Abstract] [Full Text] [Related]

  • 12. Diffusional water permeability of human erythrocytes and their ghosts.
    Brahm J.
    J Gen Physiol; 1982 May 27; 79(5):791-819. PubMed ID: 7097244
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Urea transport in human red blood cells: Donor variation compared to chloride, glucose, and water transport.
    Leifelt J, Dziegiel MH, Brahm J.
    J Gen Physiol; 2023 Oct 02; 155(10):. PubMed ID: 37535830
    [Abstract] [Full Text] [Related]

  • 15. Energetic and molecular water permeation mechanisms of the human red blood cell urea transporter B.
    Azouzi S, Gueroult M, Ripoche P, Genetet S, Colin Aronovicz Y, Le Van Kim C, Etchebest C, Mouro-Chanteloup I.
    PLoS One; 2013 Oct 02; 8(12):e82338. PubMed ID: 24376529
    [Abstract] [Full Text] [Related]

  • 16. Membrane potential, chloride exchange, and chloride conductance in Ehrlich mouse ascites tumour cells.
    Hoffmann EK, Simonsen LO, Sjøholm C.
    J Physiol; 1979 Nov 02; 296():61-84. PubMed ID: 529133
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Theoretical effects of UTB urea transporters in the renal medullary microcirculation.
    Zhang W, Edwards A.
    Am J Physiol Renal Physiol; 2003 Oct 02; 285(4):F731-47. PubMed ID: 12824077
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.