These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


257 related items for PubMed ID: 23470758

  • 41. [Mechanisms and regulation of enzymatic hydrolysis of cellulose in filamentous fungi: classical cases and new models].
    Gutiérrez-Rojas I, Moreno-Sarmiento N, Montoya D.
    Rev Iberoam Micol; 2015; 32(1):1-12. PubMed ID: 24607657
    [Abstract] [Full Text] [Related]

  • 42. Transgressive phenotypes from outbreeding between the Trichoderma reesei hyper producer RutC30 and a natural isolate.
    Chan Ho Tong L, Jourdier E, Naquin D, Ben Chaabane F, Aouam T, Chartier G, Castro González I, Margeot A, Bidard F.
    Microbiol Spectr; 2024 Oct 03; 12(10):e0044124. PubMed ID: 39162516
    [Abstract] [Full Text] [Related]

  • 43.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 44. Reidentification of cellulolytic enzyme-producing Trichoderma strains W-10 and G-39.
    Lee CF, Liu DY, Lai MT, Hseu TH.
    Can J Microbiol; 2006 Jun 03; 52(6):570-4. PubMed ID: 16788725
    [Abstract] [Full Text] [Related]

  • 45. Ras GTPases modulate morphogenesis, sporulation and cellulase gene expression in the cellulolytic fungus Trichoderma reesei.
    Zhang J, Zhang Y, Zhong Y, Qu Y, Wang T.
    PLoS One; 2012 Jun 03; 7(11):e48786. PubMed ID: 23152805
    [Abstract] [Full Text] [Related]

  • 46. Efficient Coproduction of Mannanase and Cellulase by the Transformation of a Codon-Optimized Endomannanase Gene from Aspergillus niger into Trichoderma reesei.
    Sun X, Xue X, Li M, Gao F, Hao Z, Huang H, Luo H, Qin L, Yao B, Su X.
    J Agric Food Chem; 2017 Dec 20; 65(50):11046-11053. PubMed ID: 29199828
    [Abstract] [Full Text] [Related]

  • 47. Identification of the cis-acting elements involved in regulation of xylanase III gene expression in Trichoderma reesei PC-3-7.
    Furukawa T, Shida Y, Kitagami N, Ota Y, Adachi M, Nakagawa S, Shimada R, Kato M, Kobayashi T, Okada H, Ogasawara W, Morikawa Y.
    Fungal Genet Biol; 2008 Jul 20; 45(7):1094-102. PubMed ID: 18450486
    [Abstract] [Full Text] [Related]

  • 48. Strain improvement for enhanced production of cellulase in Trichoderma viride.
    Xu F, Wang J, Chen S, Qin W, Yu Z, Zhao H, Xing X, Li H.
    Prikl Biokhim Mikrobiol; 2011 Jul 20; 47(1):61-5. PubMed ID: 21438472
    [Abstract] [Full Text] [Related]

  • 49. Identification and characterization of a novel gene, TrCCD1, and its possible function in hyphal growth and conidiospore development of Trichoderma reesei.
    Zhong YH, Wang TH, Wang XL, Zhang GT, Yu HN.
    Fungal Genet Biol; 2009 Mar 20; 46(3):255-63. PubMed ID: 19166955
    [Abstract] [Full Text] [Related]

  • 50. Deletion of homologs of the SREBP pathway results in hyper-production of cellulases in Neurospora crassa and Trichoderma reesei.
    Reilly MC, Qin L, Craig JP, Starr TL, Glass NL.
    Biotechnol Biofuels; 2015 Mar 20; 8():121. PubMed ID: 26288653
    [Abstract] [Full Text] [Related]

  • 51. The protein disulphide isomerase gene of the fungus Trichoderma reesei is induced by endoplasmic reticulum stress and regulated by the carbon source.
    Saloheimo M, Lund M, Penttilä ME.
    Mol Gen Genet; 1999 Aug 20; 262(1):35-45. PubMed ID: 10503534
    [Abstract] [Full Text] [Related]

  • 52.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 53.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 54.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 55. Functional analysis of the cellobiohydrolase I promoter of the filamentous fungus Trichoderma reesei.
    Ilmén M, Onnela ML, Klemsdal S, Keränen S, Penttilä M.
    Mol Gen Genet; 1996 Dec 13; 253(3):303-14. PubMed ID: 9003317
    [Abstract] [Full Text] [Related]

  • 56. Evaluation and characterization of Trichoderma reesei cellulase and xylanase promoters.
    Rahman Z, Shida Y, Furukawa T, Suzuki Y, Okada H, Ogasawara W, Morikawa Y.
    Appl Microbiol Biotechnol; 2009 Apr 13; 82(5):899-908. PubMed ID: 19148637
    [Abstract] [Full Text] [Related]

  • 57. A cellulolytic Hypocrea strain isolated from South American brave straw produces a modular xylanase.
    Cabero K, Pozzo T, Lidén G, Karlsson EN.
    Carbohydr Res; 2012 Jul 15; 356():215-23. PubMed ID: 22609439
    [Abstract] [Full Text] [Related]

  • 58. Proteolytic analysis of Trichoderma reesei in celluase-inducing condition reveals a role for trichodermapepsin (TrAsP) in cellulase production.
    Daranagama ND, Shioya K, Yuki M, Sato H, Ohtaki Y, Suzuki Y, Shida Y, Ogasawara W.
    J Ind Microbiol Biotechnol; 2019 Jun 15; 46(6):831-842. PubMed ID: 30809754
    [Abstract] [Full Text] [Related]

  • 59. Cellulase production on high levels of cellulose and corn steep liquor.
    Farid MA, el-Shahed KY.
    Zentralbl Mikrobiol; 1993 Jun 15; 148(4):277-83. PubMed ID: 8368026
    [Abstract] [Full Text] [Related]

  • 60. Cloning and amplification of the gene encoding an extracellular beta-glucosidase from Trichoderma reesei: evidence for improved rates of saccharification of cellulosic substrates.
    Barnett CC, Berka RM, Fowler T.
    Biotechnology (N Y); 1991 Jun 15; 9(6):562-7. PubMed ID: 1367522
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 13.