These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


351 related items for PubMed ID: 23475357

  • 1. Estimating the granularity coefficient of a Potts-Markov random field within a Markov chain Monte Carlo algorithm.
    Pereyra M, Dobigeon N, Batatia H, Tourneret JY.
    IEEE Trans Image Process; 2013 Jun; 22(6):2385-97. PubMed ID: 23475357
    [Abstract] [Full Text] [Related]

  • 2. A Monte Carlo Metropolis-Hastings algorithm for sampling from distributions with intractable normalizing constants.
    Liang F, Jin IH.
    Neural Comput; 2013 Aug; 25(8):2199-234. PubMed ID: 23607562
    [Abstract] [Full Text] [Related]

  • 3. Estimation of Markov random field prior parameters using Markov chain Monte Carlo maximum likelihood.
    Descombes X, Morris RD, Zerubia J, Berthod M.
    IEEE Trans Image Process; 1999 Aug; 8(7):954-63. PubMed ID: 18267508
    [Abstract] [Full Text] [Related]

  • 4. Local Autoencoding for Parameter Estimation in a Hidden Potts-Markov Random Field.
    Song S, Si B, Herrmann JM, Feng X.
    IEEE Trans Image Process; 2016 May; 25(5):2324-36. PubMed ID: 27019491
    [Abstract] [Full Text] [Related]

  • 5. A gradient Markov chain Monte Carlo algorithm for computing multivariate maximum likelihood estimates and posterior distributions: mixture dose-response assessment.
    Li R, Englehardt JD, Li X.
    Risk Anal; 2012 Feb; 32(2):345-59. PubMed ID: 21906114
    [Abstract] [Full Text] [Related]

  • 6. Weighted maximum posterior marginals for random fields using an ensemble of conditional densities from multiple Markov chain Monte Carlo simulations.
    Monaco JP, Madabhushi A.
    IEEE Trans Med Imaging; 2011 Jul; 30(7):1353-64. PubMed ID: 21335309
    [Abstract] [Full Text] [Related]

  • 7. A Metropolis Monte Carlo implementation of bayesian time-domain parameter estimation: application to coupling constant estimation from antiphase multiplets.
    Andrec M, Prestegard JH.
    J Magn Reson; 1998 Feb; 130(2):217-32. PubMed ID: 9500892
    [Abstract] [Full Text] [Related]

  • 8. A general construction for parallelizing Metropolis-Hastings algorithms.
    Calderhead B.
    Proc Natl Acad Sci U S A; 2014 Dec 09; 111(49):17408-13. PubMed ID: 25422442
    [Abstract] [Full Text] [Related]

  • 9. BAYESIAN INFERENCE OF STOCHASTIC REACTION NETWORKS USING MULTIFIDELITY SEQUENTIAL TEMPERED MARKOV CHAIN MONTE CARLO.
    Catanach TA, Vo HD, Munsky B.
    Int J Uncertain Quantif; 2020 Dec 09; 10(6):515-542. PubMed ID: 34007522
    [Abstract] [Full Text] [Related]

  • 10. A Bayesian hidden Potts mixture model for analyzing lung cancer pathology images.
    Li Q, Wang X, Liang F, Yi F, Xie Y, Gazdar A, Xiao G.
    Biostatistics; 2019 Oct 01; 20(4):565-581. PubMed ID: 29788035
    [Abstract] [Full Text] [Related]

  • 11. An algorithm for Monte Carlo estimation of genotype probabilities on complex pedigrees.
    Lin S, Thompson E, Wijsman E.
    Ann Hum Genet; 1994 Oct 01; 58(4):343-57. PubMed ID: 7864590
    [Abstract] [Full Text] [Related]

  • 12. Bayesian Computational Methods for Sampling from the Posterior Distribution of a Bivariate Survival Model, Based on AMH Copula in the Presence of Right-Censored Data.
    Saraiva EF, Suzuki AK, Milan LA.
    Entropy (Basel); 2018 Aug 27; 20(9):. PubMed ID: 33265731
    [Abstract] [Full Text] [Related]

  • 13. A Bootstrap Metropolis-Hastings Algorithm for Bayesian Analysis of Big Data.
    Liang F, Kim J, Song Q.
    Technometrics; 2016 Aug 27; 58(3):604-318. PubMed ID: 29033469
    [Abstract] [Full Text] [Related]

  • 14. Maximum-likelihood parameter estimation for unsupervised stochastic model-based image segmentation.
    Zhang J, Modestino JW, Langan DA.
    IEEE Trans Image Process; 1994 Aug 27; 3(4):404-20. PubMed ID: 18291939
    [Abstract] [Full Text] [Related]

  • 15. Gibbs-Slice Sampling Algorithm for Estimating the Four-Parameter Logistic Model.
    Zhang J, Lu J, Du H, Zhang Z.
    Front Psychol; 2020 Aug 27; 11():2121. PubMed ID: 33041882
    [Abstract] [Full Text] [Related]

  • 16. Variational method for estimating the rate of convergence of Markov-chain Monte Carlo algorithms.
    Casey FP, Waterfall JJ, Gutenkunst RN, Myers CR, Sethna JP.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct 27; 78(4 Pt 2):046704. PubMed ID: 18999558
    [Abstract] [Full Text] [Related]

  • 17. Ascertainment correction for Markov chain Monte Carlo segregation and linkage analysis of a quantitative trait.
    Ma J, Amos CI, Warwick Daw E.
    Genet Epidemiol; 2007 Sep 27; 31(6):594-604. PubMed ID: 17487893
    [Abstract] [Full Text] [Related]

  • 18. Bayesian phylogeny analysis via stochastic approximation Monte Carlo.
    Cheon S, Liang F.
    Mol Phylogenet Evol; 2009 Nov 27; 53(2):394-403. PubMed ID: 19589389
    [Abstract] [Full Text] [Related]

  • 19. VMCMC: a graphical and statistical analysis tool for Markov chain Monte Carlo traces.
    Ali RH, Bark M, Miró J, Muhammad SA, Sjöstrand J, Zubair SM, Abbas RM, Arvestad L.
    BMC Bioinformatics; 2017 Feb 10; 18(1):97. PubMed ID: 28187712
    [Abstract] [Full Text] [Related]

  • 20. A Novel and Highly Effective Bayesian Sampling Algorithm Based on the Auxiliary Variables to Estimate the Testlet Effect Models.
    Lu J, Zhang J, Zhang Z, Xu B, Tao J.
    Front Psychol; 2021 Feb 10; 12():509575. PubMed ID: 34456774
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.