These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
129 related items for PubMed ID: 23480279
1. Experimental and computational study of the interaction of novel colchicinoids with a recombinant human αI/βI-tubulin heterodimer. Mane JY, Semenchenko V, Perez-Pineiro R, Winter P, Wishart D, Tuszynski JA. Chem Biol Drug Des; 2013 Jul; 82(1):60-70. PubMed ID: 23480279 [Abstract] [Full Text] [Related]
2. Different kinetic pathways of the binding of two biphenyl analogues of colchicine to tubulin. Dumortier C, Gorbunoff MJ, Andreu JM, Engelborghs Y. Biochemistry; 1996 Apr 09; 35(14):4387-95. PubMed ID: 8605187 [Abstract] [Full Text] [Related]
3. The B-ring substituent at C-7 of colchicine and the alpha-C-terminus of tubulin communicate through the "tail-body" interaction. Chakraborty S, Gupta S, Sarkar T, Poddar A, Pena J, Solana R, Tarazona R, Bhattacharyya B. Proteins; 2004 Nov 15; 57(3):602-9. PubMed ID: 15382227 [Abstract] [Full Text] [Related]
4. -NH-dansyl isocolchicine exhibits a significantly improved tubulin-binding affinity and microtubule inhibition in comparison to isocolchicine by binding tubulin through its A and B rings. Das L, Datta AB, Gupta S, Poddar A, Sengupta S, Janik ME, Bhattacharyya B. Biochemistry; 2005 Mar 08; 44(9):3249-58. PubMed ID: 15736935 [Abstract] [Full Text] [Related]
5. Anti-mitotic activity of colchicine and the structural basis for its interaction with tubulin. Bhattacharyya B, Panda D, Gupta S, Banerjee M. Med Res Rev; 2008 Jan 08; 28(1):155-83. PubMed ID: 17464966 [Abstract] [Full Text] [Related]
6. Discrimination of ligands with different flexibilities resulting from the plasticity of the binding site in tubulin. Chakraborti S, Chakravarty D, Gupta S, Chatterji BP, Dhar G, Poddar A, Panda D, Chakrabarti P, Ghosh Dastidar S, Bhattacharyya B. Biochemistry; 2012 Sep 11; 51(36):7138-48. PubMed ID: 22891709 [Abstract] [Full Text] [Related]
7. Polymerization and calcium binding of the tubulin-colchicine complex in the GDP state. Doi H, Kawaguchi M, Timasheff SN. Biosci Biotechnol Biochem; 2003 Aug 11; 67(8):1643-52. PubMed ID: 12951495 [Abstract] [Full Text] [Related]
8. Interaction of novel thiocolchicine analogs with the tubulin isoforms from bovine brain. Banerjee A, Kasmala LT, Hamel E, Sun L, Lee KH. Biochem Biophys Res Commun; 1999 Jan 19; 254(2):334-7. PubMed ID: 9918839 [Abstract] [Full Text] [Related]
9. Discovery of novel tubulin inhibitors via structure-based hierarchical virtual screening. Cao R, Liu M, Yin M, Liu Q, Wang Y, Huang N. J Chem Inf Model; 2012 Oct 22; 52(10):2730-40. PubMed ID: 22992059 [Abstract] [Full Text] [Related]
10. Free energy calculations on the binding of colchicine and its derivatives with the alpha/beta-tubulin isoforms. Mane JY, Klobukowski M, Huzil JT, Tuszynski J. J Chem Inf Model; 2008 Sep 22; 48(9):1824-32. PubMed ID: 18712858 [Abstract] [Full Text] [Related]
11. Exploring the Origin of Differential Binding Affinities of Human Tubulin Isotypes αβII, αβIII and αβIV for DAMA-Colchicine Using Homology Modelling, Molecular Docking and Molecular Dynamics Simulations. Kumbhar BV, Borogaon A, Panda D, Kunwar A. PLoS One; 2016 Sep 22; 11(5):e0156048. PubMed ID: 27227832 [Abstract] [Full Text] [Related]
12. Sequence divergence of Entamoeba histolytica tubulin is responsible for its altered tertiary structure. Roy D, Lohia A. Biochem Biophys Res Commun; 2004 Jul 02; 319(3):1010-6. PubMed ID: 15184082 [Abstract] [Full Text] [Related]
13. Towards the identification of the binding site of benzimidazoles to β-tubulin of Trichinella spiralis: insights from computational and experimental data. Aguayo-Ortiz R, Méndez-Lucio O, Medina-Franco JL, Castillo R, Yépez-Mulia L, Hernández-Luis F, Hernández-Campos A. J Mol Graph Model; 2013 Apr 02; 41():12-9. PubMed ID: 23454612 [Abstract] [Full Text] [Related]
14. Tubulin conformation and dynamics: a red edge excitation shift study. Guha S, Rawat SS, Chattopadhyay A, Bhattacharyya B. Biochemistry; 1996 Oct 15; 35(41):13426-33. PubMed ID: 8873611 [Abstract] [Full Text] [Related]
15. N-acetylcolchinol O-methyl ether and thiocolchicine, potent analogs of colchicine modified in the C ring. Evaluation of the mechanistic basis for their enhanced biological properties. Kang GJ, Getahun Z, Muzaffar A, Brossi A, Hamel E. J Biol Chem; 1990 Jun 25; 265(18):10255-9. PubMed ID: 2191947 [Abstract] [Full Text] [Related]
16. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Ravelli RB, Gigant B, Curmi PA, Jourdain I, Lachkar S, Sobel A, Knossow M. Nature; 2004 Mar 11; 428(6979):198-202. PubMed ID: 15014504 [Abstract] [Full Text] [Related]
17. Computational design and biological testing of highly cytotoxic colchicine ring A modifications. Torin Huzil J, Winter P, Johnson L, Weis AL, Bakos T, Banerjee A, Luduena RF, Damaraju S, Tuszynski JA. Chem Biol Drug Des; 2010 Jun 11; 75(6):541-50. PubMed ID: 20408852 [Abstract] [Full Text] [Related]
18. Association of thiocolchicine with tubulin. Chabin RM, Hastie SB. Biochem Biophys Res Commun; 1989 Jun 15; 161(2):544-50. PubMed ID: 2735908 [Abstract] [Full Text] [Related]
19. Quantitative characterization of the binding of fluorescently labeled colchicine to tubulin in vitro using fluorescence correlation spectroscopy. Van Craenenbroeck E, Engelborghs Y. Biochemistry; 1999 Apr 20; 38(16):5082-8. PubMed ID: 10213611 [Abstract] [Full Text] [Related]
20. Molecular modelling studies on Arylthioindoles as potent inhibitors of tubulin polymerization. Coluccia A, Sabbadin D, Brancale A. Eur J Med Chem; 2011 Aug 20; 46(8):3519-25. PubMed ID: 21621885 [Abstract] [Full Text] [Related] Page: [Next] [New Search]