These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
778 related items for PubMed ID: 23488013
21. [Effects of individual and combined pollution of Cd and Zn on root exudates and rhizosphere Zn and Cd fractions in ryegrass (Loliurn perenne L.)]. Xu WH, Wang HX, Liu H, Xiong ZT, Singh B. Huan Jing Ke Xue; 2007 Sep; 28(9):2089-95. PubMed ID: 17990563 [Abstract] [Full Text] [Related]
22. Fungal inoculation and elevated CO2 mediate growth of Lolium mutiforum and Phytolacca americana, metal uptake, and metal bioavailability in metal-contaminated soil: evidence from DGT measurement. Song N, Wang F, Zhang C, Tang S, Guo J, Ju X, Smith DL. Int J Phytoremediation; 2013 Sep; 15(3):268-82. PubMed ID: 23488012 [Abstract] [Full Text] [Related]
23. Changes in Metal Availability and Improvements in Microbial Properties After Phytoextraction of a Cd, Zn and Pb Contaminated Soil. Yang W, Li P, Rensing C, Nie S. Bull Environ Contam Toxicol; 2018 Nov; 101(5):624-630. PubMed ID: 30370447 [Abstract] [Full Text] [Related]
24. [Enhanced Phytoextraction of Heavy Metals from Contaminated Soils Using Sedum alfredii Hance with Biodegradable Chelate GLDA]. Wei ZB, Chen XH, Wu QT, Tan M. Huan Jing Ke Xue; 2015 May; 36(5):1864-9. PubMed ID: 26314141 [Abstract] [Full Text] [Related]
25. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. Ma Y, Oliveira RS, Nai F, Rajkumar M, Luo Y, Rocha I, Freitas H. J Environ Manage; 2015 Jun 01; 156():62-9. PubMed ID: 25796039 [Abstract] [Full Text] [Related]
26. Synergistic effect of pyrene and heavy metals (Zn, Pb, and Cd) on phytoremediation potential of Medicago sativa L. (alfalfa) in multi-contaminated soil. Mathur J, Panwar R. Environ Sci Pollut Res Int; 2024 Mar 01; 31(14):21012-21027. PubMed ID: 38383928 [Abstract] [Full Text] [Related]
27. Phytoextraction of heavy metals from contaminated soil by co-cropping with chelator application and assessment of associated leaching risk. Wei ZB, Guo XF, Wu QT, Long XX, Penn CJ. Int J Phytoremediation; 2011 Aug 01; 13(7):717-29. PubMed ID: 21972498 [Abstract] [Full Text] [Related]
28. Intercropping Sedum alfredii Hance and Cicer arietinum L. does not present a suitable land use pattern for multi-metal-polluted soil. He H, Jia Y, Li R, Yang P, Cao M, Luo J. Environ Sci Pollut Res Int; 2023 Aug 01; 30(38):89616-89626. PubMed ID: 37454382 [Abstract] [Full Text] [Related]
29. Comparison of synthetic chelators and low molecular weight organic acids in enhancing phytoextraction of heavy metals by two ecotypes of Sedum alfredii Hance. Liu D, Islam E, Li T, Yang X, Jin X, Mahmood Q. J Hazard Mater; 2008 May 01; 153(1-2):114-22. PubMed ID: 17904736 [Abstract] [Full Text] [Related]
30. Effects of amendments on copper, cadmium, and lead phytoextraction by Lolium perenne from multiple-metal contaminated solution. Gunawardana B, Singhal N, Johnson A. Int J Phytoremediation; 2011 Mar 01; 13(3):215-32. PubMed ID: 21598788 [Abstract] [Full Text] [Related]
31. Root responses and metal accumulation in two contrasting ecotypes of Sedum alfredii Hance under lead and zinc toxic stress. Li TQ, Yang XE, Jin XF, He ZL, Stoffella PJ, Hu QH. J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005 Mar 01; 40(5):1081-96. PubMed ID: 15887576 [Abstract] [Full Text] [Related]
32. [Effect of planting densities on yields and zinc and cadmium uptake by Sedum plumbizincicola]. Liu L, Wu LH, Li N, Cui LQ, Li Z, Jiang JP, Jiang YG, Qiu XY, Luo YM. Huan Jing Ke Xue; 2009 Nov 01; 30(11):3422-6. PubMed ID: 20063765 [Abstract] [Full Text] [Related]
34. Effect of saponin on the phytoextraction of Pb, Cd and Zn from soil using Italian ryegrass. Zhu T, Fu D, Yang F. Bull Environ Contam Toxicol; 2015 Jan 01; 94(1):129-33. PubMed ID: 25380647 [Abstract] [Full Text] [Related]
35. [Effects of intercropping Sedum plumbizincicola in wheat growth season under wheat-rice rotation on the crops growth and their heavy metals uptake from different soil types]. Zhao B, Shen LB, Cheng MM, Wang SF, Wu LH, Zhou SB, Luo YM. Ying Yong Sheng Tai Xue Bao; 2011 Oct 01; 22(10):2725-31. PubMed ID: 22263481 [Abstract] [Full Text] [Related]
36. Foliar application of plant growth regulators for enhancing heavy metal phytoextraction efficiency by Sedum alfredii Hance in contaminated soils: Lab to field experiments. Chen Z, Liu Q, Zhang S, Hamid Y, Lian J, Huang X, Zou T, Lin Q, Feng Y, He Z, Yang X. Sci Total Environ; 2024 Feb 25; 913():169788. PubMed ID: 38181951 [Abstract] [Full Text] [Related]
39. Metal accumulation and arbuscular mycorrhizal status in metallicolous and nonmetallicolous populations of Pteris vittata L. and Sedum alfredii Hance. Wu FY, Ye ZH, Wu SC, Wong MH. Planta; 2007 Nov 25; 226(6):1363-78. PubMed ID: 17624548 [Abstract] [Full Text] [Related]
40. Intraspecific variation in tomato: Impact on production quality and cadmium phytoremediation efficiency in intercropping systems with hyperaccumulating plant. Ma L, Liu Y, Sahito ZA, Liu C, Li Z, Yu C, Feng Y, Guo W. Ecotoxicol Environ Saf; 2024 Sep 01; 282():116715. PubMed ID: 39002378 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]