These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


155 related items for PubMed ID: 23494384

  • 1. Changes in corticospinal excitability following adaptive modification to human walking.
    Zabukovec JR, Boyd LA, Linsdell MA, Lam T.
    Exp Brain Res; 2013 May; 226(4):557-64. PubMed ID: 23494384
    [Abstract] [Full Text] [Related]

  • 2. Rapid changes in corticospinal excitability during force field adaptation of human walking.
    Barthélemy D, Alain S, Grey MJ, Nielsen JB, Bouyer LJ.
    Exp Brain Res; 2012 Mar; 217(1):99-115. PubMed ID: 22246104
    [Abstract] [Full Text] [Related]

  • 3. Transspinal stimulation decreases corticospinal excitability and alters the function of spinal locomotor networks.
    Pulverenti TS, Islam MA, Alsalman O, Murray LM, Harel NY, Knikou M.
    J Neurophysiol; 2019 Dec 01; 122(6):2331-2343. PubMed ID: 31577515
    [Abstract] [Full Text] [Related]

  • 4. Modulation of lower limb muscle corticospinal excitability during various types of motor imagery.
    Ishikawa K, Kaneko N, Sasaki A, Nakazawa K.
    Neurosci Lett; 2024 Jan 01; 818():137551. PubMed ID: 37926294
    [Abstract] [Full Text] [Related]

  • 5. On the potential role of the corticospinal tract in the control and progressive adaptation of the soleus h-reflex during backward walking.
    Ung RV, Imbeault MA, Ethier C, Brizzi L, Capaday C.
    J Neurophysiol; 2005 Aug 01; 94(2):1133-42. PubMed ID: 15829598
    [Abstract] [Full Text] [Related]

  • 6. Facilitation of corticospinal excitability in the tibialis anterior muscle during robot-assisted passive stepping in humans.
    Kamibayashi K, Nakajima T, Takahashi M, Akai M, Nakazawa K.
    Eur J Neurosci; 2009 Jul 01; 30(1):100-9. PubMed ID: 19523098
    [Abstract] [Full Text] [Related]

  • 7. High-intensity, low-frequency repetitive transcranial magnetic stimulation enhances excitability of the human corticospinal pathway.
    D'Amico JM, Dongés SC, Taylor JL.
    J Neurophysiol; 2020 May 01; 123(5):1969-1978. PubMed ID: 32292098
    [Abstract] [Full Text] [Related]

  • 8. Elbow angle modulates corticospinal excitability to the resting biceps brachii at both spinal and supraspinal levels.
    Dongés SC, Taylor JL, Nuzzo JL.
    Exp Physiol; 2019 Apr 01; 104(4):546-555. PubMed ID: 30690803
    [Abstract] [Full Text] [Related]

  • 9. Corticospinal Excitability Quantification During a Visually-Guided Precision Walking Task in Humans: Potential for Neurorehabilitation.
    Dambreville C, Neige C, Mercier C, Blanchette AK, Bouyer LJ.
    Neurorehabil Neural Repair; 2022 Nov 01; 36(10-11):689-700. PubMed ID: 36125038
    [Abstract] [Full Text] [Related]

  • 10. Motor imagery of foot dorsiflexion and gait: effects on corticospinal excitability.
    Bakker M, Overeem S, Snijders AH, Borm G, van Elswijk G, Toni I, Bloem BR.
    Clin Neurophysiol; 2008 Nov 01; 119(11):2519-27. PubMed ID: 18838294
    [Abstract] [Full Text] [Related]

  • 11. Corticospinal excitability during walking in humans with absent and partial body weight support.
    Knikou M, Hajela N, Mummidisetty CK.
    Clin Neurophysiol; 2013 Dec 01; 124(12):2431-8. PubMed ID: 23810634
    [Abstract] [Full Text] [Related]

  • 12. Changes in corticospinal excitability during reach adaptation in force fields.
    Orban de Xivry JJ, Ahmadi-Pajouh MA, Harran MD, Salimpour Y, Shadmehr R.
    J Neurophysiol; 2013 Jan 01; 109(1):124-36. PubMed ID: 23034365
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Task-dependent changes of corticospinal excitability during observation and motor imagery of balance tasks.
    Mouthon A, Ruffieux J, Wälchli M, Keller M, Taube W.
    Neuroscience; 2015 Sep 10; 303():535-43. PubMed ID: 26192097
    [Abstract] [Full Text] [Related]

  • 15. Corticospinal excitability in human subjects during nonrapid eye movement sleep: single and paired-pulse transcranial magnetic stimulation study.
    Avesani M, Formaggio E, Fuggetta G, Fiaschi A, Manganotti P.
    Exp Brain Res; 2008 May 10; 187(1):17-23. PubMed ID: 18231786
    [Abstract] [Full Text] [Related]

  • 16. Cortical and spinal excitability changes after robotic gait training in healthy participants.
    Blicher JU, Nielsen JF.
    Neurorehabil Neural Repair; 2009 Feb 10; 23(2):143-9. PubMed ID: 19047360
    [Abstract] [Full Text] [Related]

  • 17. Corticospinal contribution to arm muscle activity during human walking.
    Barthelemy D, Nielsen JB.
    J Physiol; 2010 Mar 15; 588(Pt 6):967-79. PubMed ID: 20123782
    [Abstract] [Full Text] [Related]

  • 18. On-line flexibility of the cognitive tuning of corticospinal excitability: a TMS study in human gait.
    Camus M, Pailhous J, Bonnard M.
    Brain Res; 2006 Mar 03; 1076(1):144-9. PubMed ID: 16473341
    [Abstract] [Full Text] [Related]

  • 19. Task-induced modulation of motor evoked potentials in upper-leg muscles during human gait: a TMS study.
    Bonnard M, Camus M, Coyle T, Pailhous J.
    Eur J Neurosci; 2002 Dec 03; 16(11):2225-30. PubMed ID: 12473090
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.