These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


191 related items for PubMed ID: 23504421

  • 1. Formation of amphipathic amyloid monolayers from fungal hydrophobin proteins.
    Morris VK, Sunde M.
    Methods Mol Biol; 2013; 996():119-29. PubMed ID: 23504421
    [Abstract] [Full Text] [Related]

  • 2. Formation of Amphipathic Amyloid Monolayers from Fungal Hydrophobin Proteins.
    Ball SR, Pham CLL, Lo V, Morris VK, Kwan AH, Sunde M.
    Methods Mol Biol; 2020; 2073():55-72. PubMed ID: 31612436
    [Abstract] [Full Text] [Related]

  • 3. Two forms and two faces, multiple states and multiple uses: Properties and applications of the self-assembling fungal hydrophobins.
    Ren Q, Kwan AH, Sunde M.
    Biopolymers; 2013 Nov; 100(6):601-12. PubMed ID: 23913717
    [Abstract] [Full Text] [Related]

  • 4. Surface functionalization of carbon nanomaterials by self-assembling hydrophobin proteins.
    Yang W, Ren Q, Wu YN, Morris VK, Rey AA, Braet F, Kwan AH, Sunde M.
    Biopolymers; 2013 Jan; 99(1):84-94. PubMed ID: 23097233
    [Abstract] [Full Text] [Related]

  • 5. The Cys3-Cys4 loop of the hydrophobin EAS is not required for rodlet formation and surface activity.
    Kwan AH, Macindoe I, Vukasin PV, Morris VK, Kass I, Gupte R, Mark AE, Templeton MD, Mackay JP, Sunde M.
    J Mol Biol; 2008 Oct 10; 382(3):708-20. PubMed ID: 18674544
    [Abstract] [Full Text] [Related]

  • 6. Structural basis for rodlet assembly in fungal hydrophobins.
    Kwan AH, Winefield RD, Sunde M, Matthews JM, Haverkamp RG, Templeton MD, Mackay JP.
    Proc Natl Acad Sci U S A; 2006 Mar 07; 103(10):3621-6. PubMed ID: 16537446
    [Abstract] [Full Text] [Related]

  • 7. The functional role of Cys3-Cys4 loop in hydrophobin HGFI.
    Niu B, Gong Y, Gao X, Xu H, Qiao M, Li W.
    Amino Acids; 2014 Nov 07; 46(11):2615-25. PubMed ID: 25240738
    [Abstract] [Full Text] [Related]

  • 8. Solution structure and interface-driven self-assembly of NC2, a new member of the Class II hydrophobin proteins.
    Ren Q, Kwan AH, Sunde M.
    Proteins; 2014 Jun 07; 82(6):990-1003. PubMed ID: 24218020
    [Abstract] [Full Text] [Related]

  • 9. Backbone and sidechain ¹H, ¹³C and ¹⁵N chemical shift assignments of the hydrophobin DewA from Aspergillus nidulans.
    Morris VK, Kwan AH, Mackay JP, Sunde M.
    Biomol NMR Assign; 2012 Apr 07; 6(1):83-6. PubMed ID: 21845363
    [Abstract] [Full Text] [Related]

  • 10. Fungal Hydrophobins and Their Self-Assembly into Functional Nanomaterials.
    Lo V, I-Chun Lai J, Sunde M.
    Adv Exp Med Biol; 2019 Apr 07; 1174():161-185. PubMed ID: 31713199
    [Abstract] [Full Text] [Related]

  • 11. Self-assembly of proteins into a three-dimensional multilayer system: investigation of the surface of the human fungal pathogen Aspergillus fumigatus.
    Zykwinska A, Pihet M, Radji S, Bouchara JP, Cuenot S.
    Biochim Biophys Acta; 2014 Jun 07; 1844(6):1137-44. PubMed ID: 24631542
    [Abstract] [Full Text] [Related]

  • 12. Analysis of the structure and conformational states of DewA gives insight into the assembly of the fungal hydrophobins.
    Morris VK, Kwan AH, Sunde M.
    J Mol Biol; 2013 Jan 23; 425(2):244-56. PubMed ID: 23137797
    [Abstract] [Full Text] [Related]

  • 13. Excretory overexpression of hydrophobins as multifunctional biosurfactants in E. coli.
    Cui L, Cheng C, Qiu Y, Jiang T, He B.
    Int J Biol Macromol; 2020 Dec 15; 165(Pt A):1296-1302. PubMed ID: 33002537
    [Abstract] [Full Text] [Related]

  • 14. Self-assembly of functional, amphipathic amyloid monolayers by the fungal hydrophobin EAS.
    Macindoe I, Kwan AH, Ren Q, Morris VK, Yang W, Mackay JP, Sunde M.
    Proc Natl Acad Sci U S A; 2012 Apr 03; 109(14):E804-11. PubMed ID: 22308366
    [Abstract] [Full Text] [Related]

  • 15. Structural analysis of hydrophobins.
    Sunde M, Kwan AH, Templeton MD, Beever RE, Mackay JP.
    Micron; 2008 Oct 03; 39(7):773-84. PubMed ID: 17875392
    [Abstract] [Full Text] [Related]

  • 16. Hydrophobins, the fungal coat unravelled.
    Wösten HA, de Vocht ML.
    Biochim Biophys Acta; 2000 Sep 18; 1469(2):79-86. PubMed ID: 10998570
    [Abstract] [Full Text] [Related]

  • 17. The use of hydrophobins to functionalize surfaces.
    Scholtmeijer K, Janssen MI, van Leeuwen MB, van Kooten TG, Hektor H, Wösten HA.
    Biomed Mater Eng; 2004 Sep 18; 14(4):447-54. PubMed ID: 15472393
    [Abstract] [Full Text] [Related]

  • 18. (1)H, (13)C and (15)N resonance assignments of the RodA hydrophobin from the opportunistic pathogen Aspergillus fumigatus.
    Pille A, Kwan AH, Cheung I, Hampsey M, Aimanianda V, Delepierre M, Latge JP, Sunde M, Guijarro JI.
    Biomol NMR Assign; 2015 Apr 18; 9(1):113-8. PubMed ID: 24659460
    [Abstract] [Full Text] [Related]

  • 19. Soluble hydrophobin mutants produced in Escherichia coli can self-assemble at various interfaces.
    Cheng Y, Wang B, Wang Y, Zhang H, Liu C, Yang L, Chen Z, Wang Y, Yang H, Wang Z.
    J Colloid Interface Sci; 2020 Aug 01; 573():384-395. PubMed ID: 32298932
    [Abstract] [Full Text] [Related]

  • 20. Probing Structural Changes during Self-assembly of Surface-Active Hydrophobin Proteins that Form Functional Amyloids in Fungi.
    Pham CLL, Rodríguez de Francisco B, Valsecchi I, Dazzoni R, Pillé A, Lo V, Ball SR, Cappai R, Wien F, Kwan AH, Guijarro JI, Sunde M.
    J Mol Biol; 2018 Oct 12; 430(20):3784-3801. PubMed ID: 30096347
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.