These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
867 related items for PubMed ID: 23504870
1. Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Piao S, Sitch S, Ciais P, Friedlingstein P, Peylin P, Wang X, Ahlström A, Anav A, Canadell JG, Cong N, Huntingford C, Jung M, Levis S, Levy PE, Li J, Lin X, Lomas MR, Lu M, Luo Y, Ma Y, Myneni RB, Poulter B, Sun Z, Wang T, Viovy N, Zaehle S, Zeng N. Glob Chang Biol; 2013 Jul; 19(7):2117-32. PubMed ID: 23504870 [Abstract] [Full Text] [Related]
3. Seasonal responses of terrestrial ecosystem water-use efficiency to climate change. Huang M, Piao S, Zeng Z, Peng S, Ciais P, Cheng L, Mao J, Poulter B, Shi X, Yao Y, Yang H, Wang Y. Glob Chang Biol; 2016 Jun; 22(6):2165-77. PubMed ID: 26663766 [Abstract] [Full Text] [Related]
4. Net primary productivity of China's terrestrial ecosystems from a process model driven by remote sensing. Feng X, Liu G, Chen JM, Chen M, Liu J, Ju WM, Sun R, Zhou W. J Environ Manage; 2007 Nov; 85(3):563-73. PubMed ID: 17234327 [Abstract] [Full Text] [Related]
6. Temperature and precipitation drive temporal variability in aquatic carbon and GHG concentrations and fluxes in a peatland catchment. Dinsmore KJ, Billett MF, Dyson KE. Glob Chang Biol; 2013 Jul; 19(7):2133-48. PubMed ID: 23568485 [Abstract] [Full Text] [Related]
7. Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2. Wenzel S, Cox PM, Eyring V, Friedlingstein P. Nature; 2016 Oct 27; 538(7626):499-501. PubMed ID: 27680704 [Abstract] [Full Text] [Related]
8. Climate-driven uncertainties in modeling terrestrial gross primary production: a site level to global-scale analysis. Barman R, Jain AK, Liang M. Glob Chang Biol; 2014 May 27; 20(5):1394-411. PubMed ID: 24273031 [Abstract] [Full Text] [Related]
9. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, Rödenbeck C, Arain MA, Baldocchi D, Bonan GB, Bondeau A, Cescatti A, Lasslop G, Lindroth A, Lomas M, Luyssaert S, Margolis H, Oleson KW, Roupsard O, Veenendaal E, Viovy N, Williams C, Woodward FI, Papale D. Science; 2010 Aug 13; 329(5993):834-8. PubMed ID: 20603496 [Abstract] [Full Text] [Related]
10. Effect of climate change, CO2 trends, nitrogen addition, and land-cover and management intensity changes on the carbon balance of European grasslands. Chang J, Ciais P, Viovy N, Vuichard N, Herrero M, Havlík P, Wang X, Sultan B, Soussana JF. Glob Chang Biol; 2016 Jan 13; 22(1):338-50. PubMed ID: 26207894 [Abstract] [Full Text] [Related]
11. Future carbon balance of China's forests under climate change and increasing CO2. Ju WM, Chen JM, Harvey D, Wang S. J Environ Manage; 2007 Nov 13; 85(3):538-62. PubMed ID: 17187919 [Abstract] [Full Text] [Related]
17. Vegetation net primary productivity and its response to climate change during 2001-2008 in the Tibetan Plateau. Gao Y, Zhou X, Wang Q, Wang C, Zhan Z, Chen L, Yan J, Qu R. Sci Total Environ; 2013 Feb 01; 444():356-62. PubMed ID: 23280293 [Abstract] [Full Text] [Related]
18. Complex spatiotemporal responses of global terrestrial primary production to climate change and increasing atmospheric CO2 in the 21st century. Pan S, Tian H, Dangal SR, Zhang C, Yang J, Tao B, Ouyang Z, Wang X, Lu C, Ren W, Banger K, Yang Q, Zhang B, Li X. PLoS One; 2014 Feb 01; 9(11):e112810. PubMed ID: 25401492 [Abstract] [Full Text] [Related]