These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
504 related items for PubMed ID: 23510970
1. Experimental validation of finite element model for proximal composite femur using optical measurements. Grassi L, Väänänen SP, Amin Yavari S, Weinans H, Jurvelin JS, Zadpoor AA, Isaksson H. J Mech Behav Biomed Mater; 2013 May; 21():86-94. PubMed ID: 23510970 [Abstract] [Full Text] [Related]
2. Prediction of strength and strain of the proximal femur by a CT-based finite element method. Bessho M, Ohnishi I, Matsuyama J, Matsumoto T, Imai K, Nakamura K. J Biomech; 2007 May; 40(8):1745-53. PubMed ID: 17034798 [Abstract] [Full Text] [Related]
3. How accurately can subject-specific finite element models predict strains and strength of human femora? Investigation using full-field measurements. Grassi L, Väänänen SP, Ristinmaa M, Jurvelin JS, Isaksson H. J Biomech; 2016 Mar 21; 49(5):802-806. PubMed ID: 26944687 [Abstract] [Full Text] [Related]
4. Anatomical comparison and evaluation of human proximal femurs modeling via different devices and FEM analysis. Verim Ö, Taşgetiren S, Er MS, Timur M, Yuran AF. Int J Med Robot; 2013 Jun 21; 9(2):e19-24. PubMed ID: 22711421 [Abstract] [Full Text] [Related]
5. Repeatability of digital image correlation for measurement of surface strains in composite long bones. Väänänen SP, Amin Yavari S, Weinans H, Zadpoor AA, Jurvelin JS, Isaksson H. J Biomech; 2013 Jul 26; 46(11):1928-32. PubMed ID: 23791085 [Abstract] [Full Text] [Related]
6. Experimental validation of a finite element model of a human cadaveric tibia. Gray HA, Taddei F, Zavatsky AB, Cristofolini L, Gill HS. J Biomech Eng; 2008 Jun 26; 130(3):031016. PubMed ID: 18532865 [Abstract] [Full Text] [Related]
7. Predicting the yield of the proximal femur using high-order finite-element analysis with inhomogeneous orthotropic material properties. Yosibash Z, Tal D, Trabelsi N. Philos Trans A Math Phys Eng Sci; 2010 Jun 13; 368(1920):2707-23. PubMed ID: 20439270 [Abstract] [Full Text] [Related]
8. A Validated Open-Source Multisolver Fourth-Generation Composite Femur Model. MacLeod AR, Rose H, Gill HS. J Biomech Eng; 2016 Dec 01; 138(12):. PubMed ID: 27618586 [Abstract] [Full Text] [Related]
9. Reliable simulations of the human proximal femur by high-order finite element analysis validated by experimental observations. Yosibash Z, Trabelsi N, Milgrom C. J Biomech; 2007 Dec 01; 40(16):3688-99. PubMed ID: 17706228 [Abstract] [Full Text] [Related]
10. To what extent can linear finite element models of human femora predict failure under stance and fall loading configurations? Schileo E, Balistreri L, Grassi L, Cristofolini L, Taddei F. J Biomech; 2014 Nov 07; 47(14):3531-8. PubMed ID: 25261321 [Abstract] [Full Text] [Related]
11. Constructing anisotropic finite element model of bone from computed tomography (CT). Kazembakhshi S, Luo Y. Biomed Mater Eng; 2014 Nov 07; 24(6):2619-26. PubMed ID: 25226965 [Abstract] [Full Text] [Related]
12. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs. Papini M, Zdero R, Schemitsch EH, Zalzal P. J Biomech Eng; 2007 Feb 07; 129(1):12-9. PubMed ID: 17227093 [Abstract] [Full Text] [Related]
13. Comparison of 3D finite element analysis derived stiffness and BMD to determine the failure load of the excised proximal femur. Langton CM, Pisharody S, Keyak JH. Med Eng Phys; 2009 Jul 07; 31(6):668-72. PubMed ID: 19230742 [Abstract] [Full Text] [Related]
14. Prediction of bone strength by μCT and MDCT-based finite-element-models: how much spatial resolution is needed? Bauer JS, Sidorenko I, Mueller D, Baum T, Issever AS, Eckstein F, Rummeny EJ, Link TM, Raeth CW. Eur J Radiol; 2014 Jan 07; 83(1):e36-42. PubMed ID: 24274992 [Abstract] [Full Text] [Related]
15. Experimental validation of a finite element model of the proximal femur using digital image correlation and a composite bone model. Dickinson AS, Taylor AC, Ozturk H, Browne M. J Biomech Eng; 2011 Jan 07; 133(1):014504. PubMed ID: 21186906 [Abstract] [Full Text] [Related]
16. Fracture prediction for the proximal femur using finite element models: Part I--Linear analysis. Lotz JC, Cheal EJ, Hayes WC. J Biomech Eng; 1991 Nov 07; 113(4):353-60. PubMed ID: 1762430 [Abstract] [Full Text] [Related]
17. Are DXA/aBMD and QCT/FEA Stiffness and Strength Estimates Sensitive to Sex and Age? Rezaei A, Giambini H, Rossman T, Carlson KD, Yaszemski MJ, Lu L, Dragomir-Daescu D. Ann Biomed Eng; 2017 Dec 07; 45(12):2847-2856. PubMed ID: 28940110 [Abstract] [Full Text] [Related]
18. A novel approach to estimate trabecular bone anisotropy from stress tensors. Hazrati Marangalou J, Ito K, van Rietbergen B. Biomech Model Mechanobiol; 2015 Jan 07; 14(1):39-48. PubMed ID: 24777672 [Abstract] [Full Text] [Related]
19. Validation of subject-specific automated p-FE analysis of the proximal femur. Trabelsi N, Yosibash Z, Milgrom C. J Biomech; 2009 Feb 09; 42(3):234-41. PubMed ID: 19118831 [Abstract] [Full Text] [Related]
20. Comparison of the linear finite element prediction of deformation and strain of human cancellous bone to 3D digital volume correlation measurements. Zauel R, Yeni YN, Bay BK, Dong XN, Fyhrie DP. J Biomech Eng; 2006 Feb 09; 128(1):1-6. PubMed ID: 16532610 [Abstract] [Full Text] [Related] Page: [Next] [New Search]