These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


169 related items for PubMed ID: 23514037

  • 1. Performance of AFEX™ pretreated rice straw as source of fermentable sugars: the influence of particle size.
    Harun S, Balan V, Takriff MS, Hassan O, Jahim J, Dale BE.
    Biotechnol Biofuels; 2013; 6():40. PubMed ID: 23514037
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Conversion of lignocellulosic agave residues into liquid biofuels using an AFEX™-based biorefinery.
    Flores-Gómez CA, Escamilla Silva EM, Zhong C, Dale BE, da Costa Sousa L, Balan V.
    Biotechnol Biofuels; 2018; 11():7. PubMed ID: 29371883
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Enzymatic digestibility and ethanol fermentability of AFEX-treated starch-rich lignocellulosics such as corn silage and whole corn plant.
    Shao Q, Chundawat SP, Krishnan C, Bals B, Sousa Lda C, Thelen KD, Dale BE, Balan V.
    Biotechnol Biofuels; 2010 Jun 09; 3():12. PubMed ID: 20534126
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Optimization of ammonia fiber expansion (AFEX) pretreatment and enzymatic hydrolysis of Miscanthus x giganteus to fermentable sugars.
    Murnen HK, Balan V, Chundawat SP, Bals B, Sousa Lda C, Dale BE.
    Biotechnol Prog; 2007 Jun 09; 23(4):846-50. PubMed ID: 17585779
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Chemical Pretreatment-Independent Saccharifications of Xylan and Cellulose of Rice Straw by Bacterial Weak Lignin-Binding Xylanolytic and Cellulolytic Enzymes.
    Teeravivattanakit T, Baramee S, Phitsuwan P, Sornyotha S, Waeonukul R, Pason P, Tachaapaikoon C, Poomputsa K, Kosugi A, Sakka K, Ratanakhanokchai K.
    Appl Environ Microbiol; 2017 Nov 15; 83(22):. PubMed ID: 28864653
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Digestibility of Bacillus firmus K-1 pretreated rice straw by different commercial cellulase cocktails.
    Teeravivattanakit T, Baramee S, Ketbot P, Waeonukul R, Pason P, Tachaapaikoon C, Ratanakhanokchai K, Phitsuwan P.
    Prep Biochem Biotechnol; 2022 Nov 15; 52(5):508-513. PubMed ID: 34455937
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Efficient bioconversion of rice straw to ethanol with TiO2/UV pretreatment.
    Kang HK, Kim D.
    Bioprocess Biosyst Eng; 2012 Jan 15; 35(1-2):43-8. PubMed ID: 21909680
    [Abstract] [Full Text] [Related]

  • 19. Bioethanol production from alkali-pretreated rice straw: effects on fermentation yield, structural characterization, and ethanol analysis.
    Ningthoujam R, Jangid P, Yadav VK, Sahoo DK, Patel A, Dhingra HK.
    Front Bioeng Biotechnol; 2023 Jan 15; 11():1243856. PubMed ID: 37600305
    [Abstract] [Full Text] [Related]

  • 20. The impacts of pretreatment on the fermentability of pretreated lignocellulosic biomass: a comparative evaluation between ammonia fiber expansion and dilute acid pretreatment.
    Lau MW, Gunawan C, Dale BE.
    Biotechnol Biofuels; 2009 Dec 04; 2():30. PubMed ID: 19961578
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.