These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
491 related items for PubMed ID: 23517546
21. Dynamic process of phase transition from wurtzite to zinc blende structure in InAs nanowires. Zheng H, Wang J, Huang JY, Wang J, Zhang Z, Mao SX. Nano Lett; 2013; 13(12):6023-7. PubMed ID: 24274356 [Abstract] [Full Text] [Related]
22. Effects of gold diffusion on n-type doping of GaAs nanowires. Tambe MJ, Ren S, Gradecak S. Nano Lett; 2010 Nov 10; 10(11):4584-9. PubMed ID: 20939583 [Abstract] [Full Text] [Related]
23. Two-step fabrication of self-catalyzed Ga-based semiconductor nanowires on Si by molecular-beam epitaxy. Yu X, Li L, Wang H, Xiao J, Shen C, Pan D, Zhao J. Nanoscale; 2016 May 19; 8(20):10615-21. PubMed ID: 27194599 [Abstract] [Full Text] [Related]
24. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga,Mn)As to 200 K via nanostructure engineering. Chen L, Yang X, Yang F, Zhao J, Misuraca J, Xiong P, von Molnár S. Nano Lett; 2011 Jul 13; 11(7):2584-9. PubMed ID: 21696165 [Abstract] [Full Text] [Related]
25. Structural and optical properties of self-catalytic GaAs:Mn nanowires grown by molecular beam epitaxy on silicon substrates. Gas K, Sadowski J, Kasama T, Siusys A, Zaleszczyk W, Wojciechowski T, Morhange JF, Altintaş A, Xu HQ, Szuszkiewicz W. Nanoscale; 2013 Aug 21; 5(16):7410-8. PubMed ID: 23832244 [Abstract] [Full Text] [Related]
27. Growth of Pure Zinc-Blende GaAs(P) Core-Shell Nanowires with Highly Regular Morphology. Zhang Y, Fonseka HA, Aagesen M, Gott JA, Sanchez AM, Wu J, Kim D, Jurczak P, Huo S, Liu H. Nano Lett; 2017 Aug 09; 17(8):4946-4950. PubMed ID: 28758401 [Abstract] [Full Text] [Related]
28. Demonstration of Confined Electron Gas and Steep-Slope Behavior in Delta-Doped GaAs-AlGaAs Core-Shell Nanowire Transistors. Morkötter S, Jeon N, Rudolph D, Loitsch B, Spirkoska D, Hoffmann E, Döblinger M, Matich S, Finley JJ, Lauhon LJ, Abstreiter G, Koblmüller G. Nano Lett; 2015 May 13; 15(5):3295-302. PubMed ID: 25923841 [Abstract] [Full Text] [Related]
29. GaAs core--shell nanowires for photovoltaic applications. Czaban JA, Thompson DA, LaPierre RR. Nano Lett; 2009 Jan 13; 9(1):148-54. PubMed ID: 19143502 [Abstract] [Full Text] [Related]
30. In(Ga)As quantum dot formation on group-III assisted catalyst-free InGaAs nanowires. Heiss M, Ketterer B, Uccelli E, Morante JR, Arbiol J, Fontcuberta i Morral A. Nanotechnology; 2011 May 13; 22(19):195601. PubMed ID: 21430322 [Abstract] [Full Text] [Related]
31. Plastic and elastic strain fields in GaAs/Si core-shell nanowires. Conesa-Boj S, Boioli F, Russo-Averchi E, Dunand S, Heiss M, Rüffer D, Wyrsch N, Ballif C, Miglio L, Fontcuberta i Morral A. Nano Lett; 2014 May 13; 14(4):1859-64. PubMed ID: 24564880 [Abstract] [Full Text] [Related]
32. Ferromagnetic GaAs/GaMnAs core-shell nanowires grown by molecular beam epitaxy. Rudolph A, Soda M, Kiessling M, Wojtowicz T, Schuh D, Wegscheider W, Zweck J, Back C, Reiger E. Nano Lett; 2009 Nov 13; 9(11):3860-6. PubMed ID: 19731920 [Abstract] [Full Text] [Related]
33. Heterojunction photovoltaics using GaAs nanowires and conjugated polymers. Ren S, Zhao N, Crawford SC, Tambe M, Bulović V, Gradecak S. Nano Lett; 2011 Feb 09; 11(2):408-13. PubMed ID: 21171629 [Abstract] [Full Text] [Related]
34. Influence of metal deposition on exciton-surface plasmon polariton coupling in GaAs/AlAs/GaAs core-shell nanowires studied with time-resolved cathodoluminescence. Estrin Y, Rich DH, Kretinin AV, Shtrikman H. Nano Lett; 2013 Apr 10; 13(4):1602-10. PubMed ID: 23516975 [Abstract] [Full Text] [Related]
35. Microstructural evolution in self-catalyzed GaAs nanowires during in-situ TEM study. Gang GW, Lee JH, Kim SY, Jeong T, Bin Kim K, Thi Hong Men N, Kim YR, Ahn SJ, Kim CS, Kim YH. Nanotechnology; 2021 Apr 02; 32(14):145709. PubMed ID: 33326944 [Abstract] [Full Text] [Related]
37. Carrier lifetime and mobility enhancement in nearly defect-free core-shell nanowires measured using time-resolved terahertz spectroscopy. Parkinson P, Joyce HJ, Gao Q, Tan HH, Zhang X, Zou J, Jagadish C, Herz LM, Johnston MB. Nano Lett; 2009 Sep 02; 9(9):3349-53. PubMed ID: 19736975 [Abstract] [Full Text] [Related]
38. Simultaneous integration of different nanowires on single textured Si (100) substrates. Rieger T, Rosenbach D, Mussler G, Schäpers T, Grützmacher D, Lepsa MI. Nano Lett; 2015 Mar 11; 15(3):1979-86. PubMed ID: 25650521 [Abstract] [Full Text] [Related]
39. Wurtzite (Ga,Mn)As nanowire shells with ferromagnetic properties. Sadowski J, Kret S, Šiušys A, Wojciechowski T, Gas K, Islam MF, Canali CM, Sawicki M. Nanoscale; 2017 Feb 09; 9(6):2129-2137. PubMed ID: 28120988 [Abstract] [Full Text] [Related]
40. High mobility one- and two-dimensional electron systems in nanowire-based quantum heterostructures. Funk S, Royo M, Zardo I, Rudolph D, Morkötter S, Mayer B, Becker J, Bechtold A, Matich S, Döblinger M, Bichler M, Koblmüller G, Finley JJ, Bertoni A, Goldoni G, Abstreiter G. Nano Lett; 2013 Feb 09; 13(12):6189-96. PubMed ID: 24274328 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]