These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


239 related items for PubMed ID: 23518762

  • 1. Nature of proton transport in a water-filled carbon nanotube and in liquid water.
    Chen J, Li XZ, Zhang Q, Michaelides A, Wang E.
    Phys Chem Chem Phys; 2013 May 07; 15(17):6344-9. PubMed ID: 23518762
    [Abstract] [Full Text] [Related]

  • 2. Mechanism of fast proton transport along one-dimensional water chains confined in carbon nanotubes.
    Cao Z, Peng Y, Yan T, Li S, Li A, Voth GA.
    J Am Chem Soc; 2010 Aug 25; 132(33):11395-7. PubMed ID: 20669967
    [Abstract] [Full Text] [Related]

  • 3. Hydroxide ion can move faster than an excess proton through one-dimensional water chains in hydrophobic narrow pores.
    Bankura A, Chandra A.
    J Phys Chem B; 2012 Aug 16; 116(32):9744-57. PubMed ID: 22793519
    [Abstract] [Full Text] [Related]

  • 4. Ab initio molecular dynamics simulations investigating proton transfer in perfluorosulfonic acid functionalized carbon nanotubes.
    Habenicht BF, Paddison SJ, Tuckerman ME.
    Phys Chem Chem Phys; 2010 Aug 21; 12(31):8728-32. PubMed ID: 20556301
    [Abstract] [Full Text] [Related]

  • 5. Proton transport in triflic acid pentahydrate studied via ab initio path integral molecular dynamics.
    Hayes RL, Paddison SJ, Tuckerman ME.
    J Phys Chem A; 2011 Jun 16; 115(23):6112-24. PubMed ID: 21434672
    [Abstract] [Full Text] [Related]

  • 6. Proton transport through water-filled carbon nanotubes.
    Dellago C, Naor MM, Hummer G.
    Phys Rev Lett; 2003 Mar 14; 90(10):105902. PubMed ID: 12689010
    [Abstract] [Full Text] [Related]

  • 7. The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations.
    Maupin CM, Aradi B, Voth GA.
    J Phys Chem B; 2010 May 27; 114(20):6922-31. PubMed ID: 20426461
    [Abstract] [Full Text] [Related]

  • 8. Ab initio simulations of the effects of nanoscale confinement on proton transfer in hydrophobic environments.
    Habenicht BF, Paddison SJ.
    J Phys Chem B; 2011 Sep 22; 115(37):10826-35. PubMed ID: 21830811
    [Abstract] [Full Text] [Related]

  • 9. Proton transfer through hydrogen bonds in two-dimensional water layers: a theoretical study based on ab initio and quantum-classical simulations.
    Bankura A, Chandra A.
    J Chem Phys; 2015 Jan 28; 142(4):044701. PubMed ID: 25637997
    [Abstract] [Full Text] [Related]

  • 10. The curious case of the hydrated proton.
    Knight C, Voth GA.
    Acc Chem Res; 2012 Jan 17; 45(1):101-9. PubMed ID: 21859071
    [Abstract] [Full Text] [Related]

  • 11. Proton transfer and the mobilities of the H+ and OH- ions from studies of a dissociating model for water.
    Lee SH, Rasaiah JC.
    J Chem Phys; 2011 Sep 28; 135(12):124505. PubMed ID: 21974533
    [Abstract] [Full Text] [Related]

  • 12. Lifetimes of excess protons in water using a dissociative water potential.
    Lockwood GK, Garofalini SH.
    J Phys Chem B; 2013 Apr 18; 117(15):4089-97. PubMed ID: 23565831
    [Abstract] [Full Text] [Related]

  • 13. Structure and dynamics of proton transfer in liquid imidazole. A molecular dynamics simulation.
    Li A, Cao Z, Li Y, Yan T, Shen P.
    J Phys Chem B; 2012 Oct 25; 116(42):12793-800. PubMed ID: 23025510
    [Abstract] [Full Text] [Related]

  • 14. Accelerating water transport through a charged SWCNT: a molecular dynamics simulation.
    Lu D.
    Phys Chem Chem Phys; 2013 Sep 14; 15(34):14447-57. PubMed ID: 23884179
    [Abstract] [Full Text] [Related]

  • 15. Hydrogen forms in water by proton transfer to a distorted electron.
    Marsalek O, Frigato T, VandeVondele J, Bradforth SE, Schmidt B, Schütte C, Jungwirth P.
    J Phys Chem B; 2010 Jan 21; 114(2):915-20. PubMed ID: 19961167
    [Abstract] [Full Text] [Related]

  • 16. Water conduction through the hydrophobic channel of a carbon nanotube.
    Hummer G, Rasaiah JC, Noworyta JP.
    Nature; 2001 Nov 08; 414(6860):188-90. PubMed ID: 11700553
    [Abstract] [Full Text] [Related]

  • 17. Kinetics of water filling the hydrophobic channels of narrow carbon nanotubes studied by molecular dynamics simulations.
    Wu K, Zhou B, Xiu P, Qi W, Wan R, Fang H.
    J Chem Phys; 2010 Nov 28; 133(20):204702. PubMed ID: 21133447
    [Abstract] [Full Text] [Related]

  • 18. Proton hydration in aqueous solution: Fourier transform infrared studies of HDO spectra.
    Smiechowski M, Stangret J.
    J Chem Phys; 2006 Nov 28; 125(20):204508. PubMed ID: 17144716
    [Abstract] [Full Text] [Related]

  • 19. Molecular simulation study of temperature effect on ionic hydration in carbon nanotubes.
    Shao Q, Huang L, Zhou J, Lu L, Zhang L, Lu X, Jiang S, Gubbins KE, Shen W.
    Phys Chem Chem Phys; 2008 Apr 14; 10(14):1896-906. PubMed ID: 18368182
    [Abstract] [Full Text] [Related]

  • 20. Proton transport in triflic acid hydrates studied via path integral car-parrinello molecular dynamics.
    Hayes RL, Paddison SJ, Tuckerman ME.
    J Phys Chem B; 2009 Dec 31; 113(52):16574-89. PubMed ID: 19968267
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.