These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


282 related items for PubMed ID: 23523967

  • 1. Double-color fluorescence in situ hybridization (FISH) for the detection of Bacillus anthracis spores in environmental samples with a novel permeabilization protocol.
    Weerasekara ML, Ryuda N, Miyamoto H, Okumura T, Ueno D, Inoue K, Someya T.
    J Microbiol Methods; 2013 Jun; 93(3):177-84. PubMed ID: 23523967
    [Abstract] [Full Text] [Related]

  • 2. A DNA microarray facilitates the diagnosis of Bacillus anthracis in environmental samples.
    Felder KM, Hoelzle K, Wittenbrink MM, Zeder M, Ehricht R, Hoelzle LE.
    Lett Appl Microbiol; 2009 Sep; 49(3):324-31. PubMed ID: 19552771
    [Abstract] [Full Text] [Related]

  • 3. In situ detection of antibiotic-resistance elements in single Bacillus cereus spores.
    Laflamme C, Gendron L, Turgeon N, Filion G, Ho J, Duchaine C.
    Syst Appl Microbiol; 2009 Aug; 32(5):323-33. PubMed ID: 19446419
    [Abstract] [Full Text] [Related]

  • 4. Permeabilization and hybridization protocols for rapid detection of Bacillus spores using fluorescence in situ hybridization.
    Filion G, Laflamme C, Turgeon N, Ho J, Duchaine C.
    J Microbiol Methods; 2009 Apr; 77(1):29-36. PubMed ID: 19159650
    [Abstract] [Full Text] [Related]

  • 5. National validation study of a swab protocol for the recovery of Bacillus anthracis spores from surfaces.
    Hodges LR, Rose LJ, O'Connell H, Arduino MJ.
    J Microbiol Methods; 2010 May; 81(2):141-6. PubMed ID: 20193714
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Evaluation of fluorescence in situ hybridization to detect encapsulated Bacillus pumilus SAFR-032 spores released from poly(methylmethacrylate).
    Mohapatra BR, La Duc MT.
    Microbiol Immunol; 2012 Jan; 56(1):40-7. PubMed ID: 22145981
    [Abstract] [Full Text] [Related]

  • 10. Evaluation of five commercial nucleic acid extraction kits for their ability to inactivate Bacillus anthracis spores and comparison of DNA yields from spores and spiked environmental samples.
    Dauphin LA, Moser BD, Bowen MD.
    J Microbiol Methods; 2009 Jan; 76(1):30-7. PubMed ID: 18824041
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Recovery balance: a method for estimating losses in a Bacillus anthracis spore sampling protocol.
    Da Silva SM, Urbas AA, Filliben JJ, Morrow JB.
    J Appl Microbiol; 2013 Mar; 114(3):807-18. PubMed ID: 23210624
    [Abstract] [Full Text] [Related]

  • 13. Development of a rapid and sensitive immunoassay for detection and subsequent recovery of Bacillus anthracis spores in environmental samples.
    Hang J, Sundaram AK, Zhu P, Shelton DR, Karns JS, Martin PA, Li S, Amstutz P, Tang CM.
    J Microbiol Methods; 2008 Jun; 73(3):242-6. PubMed ID: 18395279
    [Abstract] [Full Text] [Related]

  • 14. Evaluation of the rapid analyte measurement platform (RAMP) for the detection of Bacillus anthracis at a crime scene.
    Hoile R, Yuen M, James G, Gilbert GL.
    Forensic Sci Int; 2007 Aug 24; 171(1):1-4. PubMed ID: 17049777
    [Abstract] [Full Text] [Related]

  • 15. Most-probable-number rapid viability PCR method to detect viable spores of Bacillus anthracis in swab samples.
    Létant SE, Kane SR, Murphy GA, Alfaro TM, Hodges LR, Rose LJ, Raber E.
    J Microbiol Methods; 2010 May 24; 81(2):200-2. PubMed ID: 20193716
    [Abstract] [Full Text] [Related]

  • 16. A simple method for the rapid removal of Bacillus anthracis spores from DNA preparations.
    Dauphin LA, Bowen MD.
    J Microbiol Methods; 2009 Feb 24; 76(2):212-4. PubMed ID: 18996156
    [Abstract] [Full Text] [Related]

  • 17. Rapid identification of Bacillus anthracis spores in suspicious powder samples by using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS).
    Dybwad M, van der Laaken AL, Blatny JM, Paauw A.
    Appl Environ Microbiol; 2013 Sep 24; 79(17):5372-83. PubMed ID: 23811517
    [Abstract] [Full Text] [Related]

  • 18. Reagent-free and portable detection of Bacillus anthracis spores using a microfluidic incubator and smartphone microscope.
    Hutchison JR, Erikson RL, Sheen AM, Ozanich RM, Kelly RT.
    Analyst; 2015 Sep 21; 140(18):6269-76. PubMed ID: 26266749
    [Abstract] [Full Text] [Related]

  • 19. Fast and sensitive detection of Bacillus anthracis spores by immunoassay.
    Morel N, Volland H, Dano J, Lamourette P, Sylvestre P, Mock M, Créminon C.
    Appl Environ Microbiol; 2012 Sep 21; 78(18):6491-8. PubMed ID: 22773632
    [Abstract] [Full Text] [Related]

  • 20. Development and validation of a real-time quantitative PCR assay for rapid identification of Bacillus anthracis in environmental samples.
    Irenge LM, Durant JF, Tomaso H, Pilo P, Olsen JS, Ramisse V, Mahillon J, Gala JL.
    Appl Microbiol Biotechnol; 2010 Nov 21; 88(5):1179-92. PubMed ID: 20827474
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.