These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


159 related items for PubMed ID: 23524080

  • 1. Extraction and characterization of microcrystalline cellulose from fodder grass; Setaria glauca (L) P. Beauv, and its potential as a drug delivery vehicle for isoniazid, a first line antituberculosis drug.
    Kalita RD, Nath Y, Ochubiojo ME, Buragohain AK.
    Colloids Surf B Biointerfaces; 2013 Aug 01; 108():85-9. PubMed ID: 23524080
    [Abstract] [Full Text] [Related]

  • 2. Morphological, Physiochemical and Thermal Properties of Microcrystalline Cellulose (MCC) Extracted from Bamboo Fiber.
    Rasheed M, Jawaid M, Karim Z, Abdullah LC.
    Molecules; 2020 Jun 18; 25(12):. PubMed ID: 32570929
    [Abstract] [Full Text] [Related]

  • 3. Preparation, characterization and its potential applications in Isoniazid drug delivery of porous microcrystalline cellulose from banana pseudostem fibers.
    Diarsa M, Gupte A.
    3 Biotech; 2021 Jul 18; 11(7):334. PubMed ID: 34221805
    [Abstract] [Full Text] [Related]

  • 4. A stable multiple emulsion system bearing isoniazid: preparation and characterization.
    Khopade AJ, Jain NK.
    Drug Dev Ind Pharm; 1998 Mar 18; 24(3):289-93. PubMed ID: 9876587
    [Abstract] [Full Text] [Related]

  • 5. Isolation and characterization of microcrystalline cellulose from roselle fibers.
    Kian LK, Jawaid M, Ariffin H, Alothman OY.
    Int J Biol Macromol; 2017 Oct 18; 103():931-940. PubMed ID: 28549863
    [Abstract] [Full Text] [Related]

  • 6. Isolation and characterization of microcrystalline cellulose from oil palm biomass residue.
    Mohamad Haafiz MK, Eichhorn SJ, Hassan A, Jawaid M.
    Carbohydr Polym; 2013 Apr 02; 93(2):628-34. PubMed ID: 23499105
    [Abstract] [Full Text] [Related]

  • 7. Characterization of microcrystalline cellulose loaded diclofenac calcium alginate gel beads in vitro.
    Pongjanyakul T.
    Pharmazie; 2007 Jul 02; 62(7):493-8. PubMed ID: 17718188
    [Abstract] [Full Text] [Related]

  • 8. Evaluation of novel microcrystalline cellulose from Ensete glaucum (Roxb.) Cheesman biomass as sustainable drug delivery biomaterial.
    Pachuau L, Dutta RS, Hauzel L, Devi TB, Deka D.
    Carbohydr Polym; 2019 Feb 15; 206():336-343. PubMed ID: 30553330
    [Abstract] [Full Text] [Related]

  • 9. Interpenetrating polymer network blend microspheres of chitosan and hydroxyethyl cellulose for controlled release of isoniazid.
    Angadi SC, Manjeshwar LS, Aminabhavi TM.
    Int J Biol Macromol; 2010 Aug 01; 47(2):171-9. PubMed ID: 20471411
    [Abstract] [Full Text] [Related]

  • 10. Novel multifunctional pharmaceutical excipients derived from microcrystalline cellulose-starch microparticulate composites prepared by compatibilized reactive polymer blending.
    Builders PF, Bonaventure AM, Tiwalade A, Okpako LC, Attama AA.
    Int J Pharm; 2010 Mar 30; 388(1-2):159-67. PubMed ID: 20060448
    [Abstract] [Full Text] [Related]

  • 11. Physico-chemical properties and thermal stability of microcrystalline cellulose isolated from Alfa fibres.
    Trache D, Donnot A, Khimeche K, Benelmir R, Brosse N.
    Carbohydr Polym; 2014 Apr 15; 104():223-30. PubMed ID: 24607181
    [Abstract] [Full Text] [Related]

  • 12. Microcrystalline cellulose from soybean husk: effects of solvent treatments on its properties as acetylsalicylic acid carrier.
    Uesu NY, Pineda EA, Hechenleitner AA.
    Int J Pharm; 2000 Sep 25; 206(1-2):85-96. PubMed ID: 11058813
    [Abstract] [Full Text] [Related]

  • 13. Preparation of microcrystalline cellulose from residual Rose stems (Rosa spp.) by successive delignification with alkaline hydrogen peroxide.
    Ventura-Cruz S, Flores-Alamo N, Tecante A.
    Int J Biol Macromol; 2020 Jul 15; 155():324-329. PubMed ID: 32234444
    [Abstract] [Full Text] [Related]

  • 14. Pharmaceutical acrylic beads obtained by suspension polymerization containing cellulose nanowhiskers as excipient for drug delivery.
    Villanova JC, Ayres E, Carvalho SM, Patrício PS, Pereira FV, Oréfice RL.
    Eur J Pharm Sci; 2011 Mar 18; 42(4):406-15. PubMed ID: 21241802
    [Abstract] [Full Text] [Related]

  • 15. Isolation and characterization of cellulose nanowhiskers from oil palm biomass microcrystalline cellulose.
    Haafiz MK, Hassan A, Zakaria Z, Inuwa IM.
    Carbohydr Polym; 2014 Mar 15; 103():119-25. PubMed ID: 24528708
    [Abstract] [Full Text] [Related]

  • 16. Insights into the production and physicochemical properties of oxycellulose microcrystalline with coexisting crystalline forms.
    Ahmed-Haras MR, Kao N, Ward L, Islam MS.
    Int J Biol Macromol; 2020 Mar 01; 146():150-161. PubMed ID: 31837363
    [Abstract] [Full Text] [Related]

  • 17. Isolation and characterization of microcrystalline cellulose from pomelo peel.
    Liu Y, Liu A, Ibrahim SA, Yang H, Huang W.
    Int J Biol Macromol; 2018 May 01; 111():717-721. PubMed ID: 29358134
    [Abstract] [Full Text] [Related]

  • 18. Purification, characterization and comparative studies of spray-dried bacterial cellulose microparticles.
    Amin MC, Abadi AG, Katas H.
    Carbohydr Polym; 2014 Jan 01; 99():180-9. PubMed ID: 24274495
    [Abstract] [Full Text] [Related]

  • 19. Preparation of lovastatin matrix sustained-release pellets by extrusion-spheronization combined with microcrystal dispersion technique.
    He H, Shi B, Cai C, Tang X.
    Arch Pharm Res; 2011 Nov 01; 34(11):1931-8. PubMed ID: 22139692
    [Abstract] [Full Text] [Related]

  • 20. Properties of microcrystalline cellulose and powder cellulose after extrusion/spheronization as studied by fourier transform Raman spectroscopy and environmental scanning electron microscopy.
    Fechner PM, Wartewig S, Füting M, Heilmann A, Neubert RH, Kleinebudde P.
    AAPS PharmSci; 2003 Nov 19; 5(4):E31. PubMed ID: 15198519
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.