These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Crosslinking studies on the Ca2+, Mg2+-activated ATPase of Escherichia coli. Bragg PD. J Supramol Struct; 1975; 3(3):297-303. PubMed ID: 127090 [Abstract] [Full Text] [Related]
5. Purification and properties of reconstitutively active and inactive adenosinetriphosphatase from Escherichia coli. Futai M, Sternweis PC, Heppel LA. Proc Natl Acad Sci U S A; 1974 Jul; 71(7):2725-9. PubMed ID: 4153028 [Abstract] [Full Text] [Related]
6. Purification and characterization of the inactive Ca2+, Mg2+-activated adenosine triphosphatase of the unc A- mutant Escherichia coli AN120. Bragg PD, Hou C. Arch Biochem Biophys; 1977 Jan 30; 178(2):486-94. PubMed ID: 13731 [No Abstract] [Full Text] [Related]
7. Membrane adenosine triphosphatases of prokaryotic cells. Downie JA, Gibson F, Cox GB. Annu Rev Biochem; 1979 Jan 30; 48():103-31. PubMed ID: 157712 [No Abstract] [Full Text] [Related]
8. Solubilization of a phospholipid-stimulated adenosine triphosphatase complex from membranes of Escherichia coli. Bragg PD, Hou C. Arch Biochem Biophys; 1976 Jun 30; 174(2):553-61. PubMed ID: 132897 [No Abstract] [Full Text] [Related]
9. Dissociation and reconstitution of a functional ATPase from Escherichia coli. Vogel G. Methods Enzymol; 1979 Jun 30; 55():800-10. PubMed ID: 156861 [No Abstract] [Full Text] [Related]
10. Cross-linking of minor subunits in Ca2+, Mg2+-activated ATPase of Escherichia coli. Bragg PD, Hou C. Biochem Biophys Res Commun; 1976 Oct 04; 72(3):1042-8. PubMed ID: 136256 [No Abstract] [Full Text] [Related]
11. Membrane ATPase of Escherichia coli K 12. Selective solubilization of the enzyme and its stimulation by trypsin in the soluble and membrane-bound states. Carreira J, Leal JA, Rojas M, Muñoz E. Biochim Biophys Acta; 1973 May 25; 307(3):541-56. PubMed ID: 4268887 [No Abstract] [Full Text] [Related]
12. Properties and functions of the subunits of the Escherichia coli coupling factor ATPase. Dunn SD, Heppel LA. Arch Biochem Biophys; 1981 Sep 25; 210(2):421-36. PubMed ID: 6171195 [No Abstract] [Full Text] [Related]
14. Assembly of the catalytic unit of the Escherichia coli membrane ATPase in vitro requires the gamma chain. Larson RJ, Smith JB. Biochemistry; 1977 Sep 20; 16(19):4266-70. PubMed ID: 143294 [No Abstract] [Full Text] [Related]
15. The KDP ATPase of Escherichia coli. Altendorf K, Siebers A, Epstein W. Ann N Y Acad Sci; 1992 Nov 30; 671():228-43. PubMed ID: 1288322 [No Abstract] [Full Text] [Related]
16. The epsilon subunit of Escherichia coli coupling factor 1 is required for its binding to the cytoplasmic membrane. Sternweis PC. J Biol Chem; 1978 May 10; 253(9):3123-8. PubMed ID: 147871 [Abstract] [Full Text] [Related]
17. Reactivity of the beta subunit of Escherichia coli adenosine triphosphatase with 4-chloro-7-nitrobenzofurazan. Lunardi J, Satre M, Bof M, Vignais PV. Biochemistry; 1979 Nov 27; 18(24):5310-6. PubMed ID: 42428 [No Abstract] [Full Text] [Related]
18. The NH2-terminal portion of the alpha subunit of Escherichia coli F1 ATPase is required for binding the delta subunit. Dunn SD, Heppel LA, Fullmer CS. J Biol Chem; 1980 Jul 25; 255(14):6891-6. PubMed ID: 6446561 [No Abstract] [Full Text] [Related]
19. Transport of sugars and amino acids in bacteria. X. Sources of energy and energy coupling reactions of the active transport systems for isoleucine and proline in E. coli. Kobayashi H, Kin E, Anraku Y. J Biochem; 1974 Aug 25; 76(2):251-61. PubMed ID: 4154322 [No Abstract] [Full Text] [Related]
20. Role of Mg2+ ions in the subunit structure and membrane binding properties of bacterial energy transducing ATPase. Abrams A, Jensen C, Morris DH. Biochem Biophys Res Commun; 1976 Apr 05; 69(3):804-11. PubMed ID: 131554 [No Abstract] [Full Text] [Related] Page: [Next] [New Search]