These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
190 related items for PubMed ID: 23528390
1. Antibacterial action of quinolones: from target to network. Cheng G, Hao H, Dai M, Liu Z, Yuan Z. Eur J Med Chem; 2013 Aug; 66():555-62. PubMed ID: 23528390 [Abstract] [Full Text] [Related]
2. [The molecular physiological and genetic mechanisms underlying the superb efficacy of quinolones]. Long QX, He Y, Xie JP. Yao Xue Xue Bao; 2012 Aug; 47(8):969-77. PubMed ID: 23162891 [Abstract] [Full Text] [Related]
3. DNA gyrase and topoisomerase IV on the bacterial chromosome: quinolone-induced DNA cleavage. Chen CR, Malik M, Snyder M, Drlica K. J Mol Biol; 1996 May 17; 258(4):627-37. PubMed ID: 8636997 [Abstract] [Full Text] [Related]
4. Mechanisms of resistance to quinolones: target alterations, decreased accumulation and DNA gyrase protection. Ruiz J. J Antimicrob Chemother; 2003 May 17; 51(5):1109-17. PubMed ID: 12697644 [Abstract] [Full Text] [Related]
5. DNA gyrase, topoisomerase IV, and the 4-quinolones. Drlica K, Zhao X. Microbiol Mol Biol Rev; 1997 Sep 17; 61(3):377-92. PubMed ID: 9293187 [Abstract] [Full Text] [Related]
6. Dual-targeting properties of the 3-aminopyrrolidyl quinolones, DC-159a and sitafloxacin, against DNA gyrase and topoisomerase IV: contribution to reducing in vitro emergence of quinolone-resistant Streptococcus pneumoniae. Okumura R, Hirata T, Onodera Y, Hoshino K, Otani T, Yamamoto T. J Antimicrob Chemother; 2008 Jul 17; 62(1):98-104. PubMed ID: 18390884 [Abstract] [Full Text] [Related]
7. Lethal fragmentation of bacterial chromosomes mediated by DNA gyrase and quinolones. Malik M, Zhao X, Drlica K. Mol Microbiol; 2006 Aug 17; 61(3):810-25. PubMed ID: 16803589 [Abstract] [Full Text] [Related]
8. Mechanism of quinolone action and resistance. Aldred KJ, Kerns RJ, Osheroff N. Biochemistry; 2014 Mar 18; 53(10):1565-74. PubMed ID: 24576155 [Abstract] [Full Text] [Related]
9. DNA Topoisomerases as Targets for Antibacterial Agents. Hiasa H. Methods Mol Biol; 2018 Mar 18; 1703():47-62. PubMed ID: 29177732 [Abstract] [Full Text] [Related]
10. Mechanisms of quinolone action and resistance: where do we stand? Correia S, Poeta P, Hébraud M, Capelo JL, Igrejas G. J Med Microbiol; 2017 May 18; 66(5):551-559. PubMed ID: 28504927 [Abstract] [Full Text] [Related]
11. The Current Case of Quinolones: Synthetic Approaches and Antibacterial Activity. Naeem A, Badshah SL, Muska M, Ahmad N, Khan K. Molecules; 2016 Mar 28; 21(4):268. PubMed ID: 27043501 [Abstract] [Full Text] [Related]
12. New inhibitors of bacterial topoisomerase GyrA/ParC subunits. Black MT, Coleman K. Curr Opin Investig Drugs; 2009 Aug 28; 10(8):804-10. PubMed ID: 19649925 [Abstract] [Full Text] [Related]
13. Contribution of the ATP binding site of ParE to susceptibility to novobiocin and quinolones in Streptococcus pneumoniae. Dupont P, Aubry A, Cambau E, Gutmann L. J Bacteriol; 2005 Feb 28; 187(4):1536-40. PubMed ID: 15687222 [Abstract] [Full Text] [Related]
14. The role of Escherichia coli YrbB in the lethal action of quinolones. Han X, Geng J, Zhang L, Lu T. J Antimicrob Chemother; 2011 Feb 28; 66(2):323-31. PubMed ID: 21098540 [Abstract] [Full Text] [Related]
15. Mechanism of action of and resistance to quinolones. Fàbrega A, Madurga S, Giralt E, Vila J. Microb Biotechnol; 2009 Jan 28; 2(1):40-61. PubMed ID: 21261881 [Abstract] [Full Text] [Related]
16. The anti-methicillin-resistant Staphylococcus aureus quinolone WCK 771 has potent activity against sequentially selected mutants, has a narrow mutant selection window against quinolone-resistant Staphylococcus aureus, and preferentially targets DNA gyrase. Bhagwat SS, Mundkur LA, Gupte SV, Patel MV, Khorakiwala HF. Antimicrob Agents Chemother; 2006 Nov 28; 50(11):3568-79. PubMed ID: 16940059 [Abstract] [Full Text] [Related]
17. Chemical structure and pharmacokinetics of novel quinolone agents represented by avarofloxacin, delafloxacin, finafloxacin, zabofloxacin and nemonoxacin. Kocsis B, Domokos J, Szabo D. Ann Clin Microbiol Antimicrob; 2016 May 23; 15(1):34. PubMed ID: 27215369 [Abstract] [Full Text] [Related]
18. New developments in non-quinolone-based antibiotics for the inhibiton of bacterial gyrase and topoisomerase IV. Badshah SL, Ullah A. Eur J Med Chem; 2018 May 25; 152():393-400. PubMed ID: 29751233 [Abstract] [Full Text] [Related]
19. The interaction of drugs with DNA gyrase: a model for the molecular basis of quinolone action. Heddle JG, Barnard FM, Wentzell LM, Maxwell A. Nucleosides Nucleotides Nucleic Acids; 2000 Aug 25; 19(8):1249-64. PubMed ID: 11097055 [Abstract] [Full Text] [Related]
20. Mechanism of binding of fluoroquinolones to the quinolone resistance-determining region of DNA gyrase: towards an understanding of the molecular basis of quinolone resistance. Madurga S, Sánchez-Céspedes J, Belda I, Vila J, Giralt E. Chembiochem; 2008 Sep 01; 9(13):2081-6. PubMed ID: 18677735 [Abstract] [Full Text] [Related] Page: [Next] [New Search]