These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


175 related items for PubMed ID: 23528782

  • 1. Using FLOWFFF and HPSEC to determine trace metal-colloid associations in wetland runoff.
    Neubauer E, v d Kammer F, Hofmann T.
    Water Res; 2013 May 15; 47(8):2757-69. PubMed ID: 23528782
    [Abstract] [Full Text] [Related]

  • 2. Multielement characterization of metal-humic substances complexation by size exclusion chromatography, asymmetrical flow field-flow fractionation, ultrafiltration and inductively coupled plasma-mass spectrometry detection: a comparative approach.
    Bolea E, Gorriz MP, Bouby M, Laborda F, Castillo JR, Geckeis H.
    J Chromatogr A; 2006 Oct 06; 1129(2):236-46. PubMed ID: 16859692
    [Abstract] [Full Text] [Related]

  • 3. Concentration and fate of trace metals in Mekong River delta.
    Cenci RM, Martin JM.
    Sci Total Environ; 2004 Oct 01; 332(1-3):167-82. PubMed ID: 15336900
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction?
    Grybos M, Davranche M, Gruau G, Petitjean P.
    J Colloid Interface Sci; 2007 Oct 15; 314(2):490-501. PubMed ID: 17692327
    [Abstract] [Full Text] [Related]

  • 6. Size-fractionation of groundwater arsenic in alluvial aquifers of West Bengal, India: the role of organic and inorganic colloids.
    Majumder S, Nath B, Sarkar S, Chatterjee D, Roman-Ross G, Hidalgo M.
    Sci Total Environ; 2014 Jan 15; 468-469():804-12. PubMed ID: 24070874
    [Abstract] [Full Text] [Related]

  • 7. Characterization of the colloidal organic matter from the Amazonian basin by asymmetrical flow field-flow fractionation and size exclusion chromatography.
    Alasonati E, Slaveykova VI, Gallard H, Croué JP, Benedetti MF.
    Water Res; 2010 Jan 15; 44(1):223-31. PubMed ID: 19811800
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Diurnal variations of dissolved and colloidal organic carbon and trace metals in a boreal lake during summer bloom.
    Pokrovsky OS, Shirokova LS.
    Water Res; 2013 Feb 01; 47(2):922-32. PubMed ID: 23219386
    [Abstract] [Full Text] [Related]

  • 10. Size-based speciation of natural colloidal particles by flow field flow fractionation, inductively coupled plasma-mass spectroscopy, and transmission electron microscopy/X-ray energy dispersive spectroscopy: colloids-trace element interaction.
    Baalousha M, Kammer FV, Motelica-Heino M, Baborowski M, Hofmeister C, Le Coustumer P.
    Environ Sci Technol; 2006 Apr 01; 40(7):2156-62. PubMed ID: 16646447
    [Abstract] [Full Text] [Related]

  • 11. Temporal variability in physical speciation of metals during a winter rain-on-snow event.
    Morrison MA, Benoit G.
    J Environ Qual; 2005 Apr 01; 34(5):1610-9. PubMed ID: 16091614
    [Abstract] [Full Text] [Related]

  • 12. Coagulation of organo-mineral colloids and formation of low molecular weight organic and metal complexes in boreal humic river water under UV-irradiation.
    Drozdova OY, Aleshina AR, Tikhonov VV, Lapitskiy SA, Pokrovsky OS.
    Chemosphere; 2020 Jul 01; 250():126216. PubMed ID: 32087384
    [Abstract] [Full Text] [Related]

  • 13. The use of ultra filtration in trace metal speciation studies in sea water.
    Singhal RK, Preetha J, Karpe R, Tirumalesh K, Kumar SC, Hegde AG.
    Environ Int; 2006 Feb 01; 32(2):224-8. PubMed ID: 16199088
    [Abstract] [Full Text] [Related]

  • 14. A systematic evaluation of Flow Field Flow Fractionation and single-particle ICP-MS to obtain the size distribution of organo-mineral iron oxyhydroxide colloids.
    Moens C, Waegeneers N, Fritzsche A, Nobels P, Smolders E.
    J Chromatogr A; 2019 Aug 16; 1599():203-214. PubMed ID: 31047657
    [Abstract] [Full Text] [Related]

  • 15. Role of colloids in heavy metal transfer through a retention-infiltration basin.
    Durin B, Béchet B, Legret M, Le Cloirec P.
    Water Sci Technol; 2007 Aug 16; 56(11):91-9. PubMed ID: 18057646
    [Abstract] [Full Text] [Related]

  • 16. Octanol-solubility of dissolved and particulate trace metals in contaminated rivers: implications for metal reactivity and availability.
    Turner A, Mawji E.
    Environ Pollut; 2005 May 16; 135(2):235-44. PubMed ID: 15734583
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Importance of nanoparticles and colloids from volcanic ash for riverine transport of trace elements to the ocean: evidence from glacial-fed rivers after the 2010 eruption of Eyjafjallajökull Volcano, Iceland.
    Tepe N, Bau M.
    Sci Total Environ; 2014 Aug 01; 488-489():243-51. PubMed ID: 24836133
    [Abstract] [Full Text] [Related]

  • 19. Effect of pH and stream order on iron and arsenic speciation in boreal catchments.
    Neubauer E, Köhler SJ, von der Kammer F, Laudon H, Hofmann T.
    Environ Sci Technol; 2013 Jul 02; 47(13):7120-8. PubMed ID: 23692297
    [Abstract] [Full Text] [Related]

  • 20. Interaction of trace elements in acid mine drainage solution with humic acid.
    Suteerapataranon S, Bouby M, Geckeis H, Fanghänel T, Grudpan K.
    Water Res; 2006 Jun 02; 40(10):2044-54. PubMed ID: 16631855
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.