These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
2473 related items for PubMed ID: 23530781
1. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Yang J, Wang D, Han H, Li C. Acc Chem Res; 2013 Aug 20; 46(8):1900-9. PubMed ID: 23530781 [Abstract] [Full Text] [Related]
2. Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts. Wen F, Li C. Acc Chem Res; 2013 Nov 19; 46(11):2355-64. PubMed ID: 23730891 [Abstract] [Full Text] [Related]
3. Visible light water splitting using dye-sensitized oxide semiconductors. Youngblood WJ, Lee SH, Maeda K, Mallouk TE. Acc Chem Res; 2009 Dec 21; 42(12):1966-73. PubMed ID: 19905000 [Abstract] [Full Text] [Related]
4. Roles of cocatalysts in semiconductor-based photocatalytic hydrogen production. Yang J, Yan H, Zong X, Wen F, Liu M, Li C. Philos Trans A Math Phys Eng Sci; 2013 Aug 13; 371(1996):20110430. PubMed ID: 23816907 [Abstract] [Full Text] [Related]
5. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Ran J, Zhang J, Yu J, Jaroniec M, Qiao SZ. Chem Soc Rev; 2014 Nov 21; 43(22):7787-812. PubMed ID: 24429542 [Abstract] [Full Text] [Related]
6. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis. Hammarström L. Acc Chem Res; 2015 Mar 17; 48(3):840-50. PubMed ID: 25675365 [Abstract] [Full Text] [Related]
7. Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion. Fan W, Zhang Q, Wang Y. Phys Chem Chem Phys; 2013 Feb 28; 15(8):2632-49. PubMed ID: 23322026 [Abstract] [Full Text] [Related]
8. Transition-Metal-Based Electrocatalysts as Cocatalysts for Photoelectrochemical Water Splitting: A Mini Review. Li D, Shi J, Li C. Small; 2018 Jun 28; 14(23):e1704179. PubMed ID: 29575653 [Abstract] [Full Text] [Related]
9. Effective Charge Carrier Utilization in Photocatalytic Conversions. Zhang P, Wang T, Chang X, Gong J. Acc Chem Res; 2016 May 17; 49(5):911-21. PubMed ID: 27075166 [Abstract] [Full Text] [Related]
10. Biomimetic and microbial approaches to solar fuel generation. Magnuson A, Anderlund M, Johansson O, Lindblad P, Lomoth R, Polivka T, Ott S, Stensjö K, Styring S, Sundström V, Hammarström L. Acc Chem Res; 2009 Dec 21; 42(12):1899-909. PubMed ID: 19757805 [Abstract] [Full Text] [Related]
11. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Hisatomi T, Kubota J, Domen K. Chem Soc Rev; 2014 Nov 21; 43(22):7520-35. PubMed ID: 24413305 [Abstract] [Full Text] [Related]
12. Rational Design and Construction of Cocatalysts for Semiconductor-Based Photo-Electrochemical Oxygen Evolution: A Comprehensive Review. Xu XT, Pan L, Zhang X, Wang L, Zou JJ. Adv Sci (Weinh); 2019 Jan 23; 6(2):1801505. PubMed ID: 30693190 [Abstract] [Full Text] [Related]
13. Tantalum-based semiconductors for solar water splitting. Zhang P, Zhang J, Gong J. Chem Soc Rev; 2014 Jul 07; 43(13):4395-422. PubMed ID: 24668282 [Abstract] [Full Text] [Related]
14. Understanding Charge Transport in Carbon Nitride for Enhanced Photocatalytic Solar Fuel Production. Rahman MZ, Mullins CB. Acc Chem Res; 2019 Jan 15; 52(1):248-257. PubMed ID: 30596234 [Abstract] [Full Text] [Related]
15. Molecular Catalysts Immobilized on Semiconductor Photosensitizers for Proton Reduction toward Visible-Light-Driven Overall Water Splitting. Morikawa T, Sato S, Sekizawa K, Arai T, Suzuki TM. ChemSusChem; 2019 May 08; 12(9):1807-1824. PubMed ID: 30963707 [Abstract] [Full Text] [Related]
16. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Zou Z, Ye J, Sayama K, Arakawa H. Nature; 2001 Dec 06; 414(6864):625-7. PubMed ID: 11740556 [Abstract] [Full Text] [Related]
17. A Ternary Dumbbell Structure with Spatially Separated Catalytic Sites for Photocatalytic Overall Water Splitting. Qiu B, Cai L, Zhang N, Tao X, Chai Y. Adv Sci (Weinh); 2020 Sep 06; 7(17):1903568. PubMed ID: 32995115 [Abstract] [Full Text] [Related]
18. Advancing the Chemistry of CuWO4 for Photoelectrochemical Water Oxidation. Lhermitte CR, Bartlett BM. Acc Chem Res; 2016 Jun 21; 49(6):1121-9. PubMed ID: 27227377 [Abstract] [Full Text] [Related]
19. Boosting Photocatalytic Water Splitting: Interfacial Charge Polarization in Atomically Controlled Core-Shell Cocatalysts. Bai S, Yang L, Wang C, Lin Y, Lu J, Jiang J, Xiong Y. Angew Chem Int Ed Engl; 2015 Dec 01; 54(49):14810-4. PubMed ID: 26463828 [Abstract] [Full Text] [Related]
20. Solar fuels via artificial photosynthesis. Gust D, Moore TA, Moore AL. Acc Chem Res; 2009 Dec 21; 42(12):1890-8. PubMed ID: 19902921 [Abstract] [Full Text] [Related] Page: [Next] [New Search]