These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


199 related items for PubMed ID: 23531170

  • 1. A computational study of systemic hydration in vocal fold collision.
    Bhattacharya P, Siegmund T.
    Comput Methods Biomech Biomed Engin; 2014; 17(16):1835-52. PubMed ID: 23531170
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Role of gradients in vocal fold elastic modulus on phonation.
    Bhattacharya P, Kelleher JE, Siegmund T.
    J Biomech; 2015 Sep 18; 48(12):3356-63. PubMed ID: 26159059
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Simulation of vocal fold impact pressures with a self-oscillating finite-element model.
    Tao C, Jiang JJ, Zhang Y.
    J Acoust Soc Am; 2006 Jun 18; 119(6):3987-94. PubMed ID: 16838541
    [Abstract] [Full Text] [Related]

  • 8. A Computational Study of Vocal Fold Dehydration During Phonation.
    Wu L, Zhang Z.
    IEEE Trans Biomed Eng; 2017 Dec 18; 64(12):2938-2948. PubMed ID: 28391188
    [Abstract] [Full Text] [Related]

  • 9. Vocal Fold Collision Speed in vivo: The Effect of Loudness.
    DeJonckere PH, Lebacq J.
    J Voice; 2022 Sep 18; 36(5):608-621. PubMed ID: 33004227
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. The effect of air flow and medial adductory compression on vocal efficiency and glottal vibration.
    Berke GS, Hanson DG, Gerratt BR, Trapp TK, Macagba C, Natividad M.
    Otolaryngol Head Neck Surg; 1990 Mar 18; 102(3):212-8. PubMed ID: 2108407
    [Abstract] [Full Text] [Related]

  • 17. Measurement of vocal fold collision forces during phonation: methods and preliminary data.
    Gunter HE, Howe RD, Zeitels SM, Kobler JB, Hillman RE.
    J Speech Lang Hear Res; 2005 Jun 18; 48(3):567-76. PubMed ID: 16197273
    [Abstract] [Full Text] [Related]

  • 18. Asymmetric airflow and vibration induced by the Coanda effect in a symmetric model of the vocal folds.
    Tao C, Zhang Y, Hottinger DG, Jiang JJ.
    J Acoust Soc Am; 2007 Oct 18; 122(4):2270-8. PubMed ID: 17902863
    [Abstract] [Full Text] [Related]

  • 19. Identification of geometric parameters influencing the flow-induced vibration of a two-layer self-oscillating computational vocal fold model.
    Pickup BA, Thomson SL.
    J Acoust Soc Am; 2011 Apr 18; 129(4):2121-32. PubMed ID: 21476668
    [Abstract] [Full Text] [Related]

  • 20. A computational study of the effect of vocal-fold asymmetry on phonation.
    Xue Q, Mittal R, Zheng X, Bielamowicz S.
    J Acoust Soc Am; 2010 Aug 18; 128(2):818-27. PubMed ID: 20707451
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.