These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
360 related items for PubMed ID: 23531216
1. MEK inhibition increases lapatinib sensitivity via modulation of FOXM1. Gayle SS, Castellino RC, Buss MC, Nahta R. Curr Med Chem; 2013; 20(19):2486-99. PubMed ID: 23531216 [Abstract] [Full Text] [Related]
3. Pharmacologic inhibition of mTOR improves lapatinib sensitivity in HER2-overexpressing breast cancer cells with primary trastuzumab resistance. Gayle SS, Arnold SL, O'Regan RM, Nahta R. Anticancer Agents Med Chem; 2012 Feb; 12(2):151-62. PubMed ID: 22043997 [Abstract] [Full Text] [Related]
5. Dual blockade of HER2 in HER2-overexpressing tumor cells does not completely eliminate HER3 function. Garrett JT, Sutton CR, Kuba MG, Cook RS, Arteaga CL. Clin Cancer Res; 2013 Feb 01; 19(3):610-9. PubMed ID: 23224399 [Abstract] [Full Text] [Related]
6. Dual mTORC1/2 and HER2 blockade results in antitumor activity in preclinical models of breast cancer resistant to anti-HER2 therapy. García-García C, Ibrahim YH, Serra V, Calvo MT, Guzmán M, Grueso J, Aura C, Pérez J, Jessen K, Liu Y, Rommel C, Tabernero J, Baselga J, Scaltriti M. Clin Cancer Res; 2012 May 01; 18(9):2603-12. PubMed ID: 22407832 [Abstract] [Full Text] [Related]
7. FoxM1 is a downstream target and marker of HER2 overexpression in breast cancer. Francis RE, Myatt SS, Krol J, Hartman J, Peck B, McGovern UB, Wang J, Guest SK, Filipovic A, Gojis O, Palmieri C, Peston D, Shousha S, Yu Q, Sicinski P, Coombes RC, Lam EW. Int J Oncol; 2009 Jul 01; 35(1):57-68. PubMed ID: 19513552 [Abstract] [Full Text] [Related]
8. Bruton's Tyrosine Kinase Inhibitors Prevent Therapeutic Escape in Breast Cancer Cells. Wang X, Wong J, Sevinsky CJ, Kokabee L, Khan F, Sun Y, Conklin DS. Mol Cancer Ther; 2016 Sep 01; 15(9):2198-208. PubMed ID: 27256378 [Abstract] [Full Text] [Related]
10. HER2-Overexpressing Breast Cancers Amplify FGFR Signaling upon Acquisition of Resistance to Dual Therapeutic Blockade of HER2. Hanker AB, Garrett JT, Estrada MV, Moore PD, Ericsson PG, Koch JP, Langley E, Singh S, Kim PS, Frampton GM, Sanford E, Owens P, Becker J, Groseclose MR, Castellino S, Joensuu H, Huober J, Brase JC, Majjaj S, Brohée S, Venet D, Brown D, Baselga J, Piccart M, Sotiriou C, Arteaga CL. Clin Cancer Res; 2017 Aug 01; 23(15):4323-4334. PubMed ID: 28381415 [Abstract] [Full Text] [Related]
11. PTK6 inhibition promotes apoptosis of Lapatinib-resistant Her2(+) breast cancer cells by inducing Bim. Park SH, Ito K, Olcott W, Katsyv I, Halstead-Nussloch G, Irie HY. Breast Cancer Res; 2015 Jun 19; 17(1):86. PubMed ID: 26084280 [Abstract] [Full Text] [Related]
12. Lapatinib. Voigtlaender M, Schneider-Merck T, Trepel M. Recent Results Cancer Res; 2018 Jun 19; 211():19-44. PubMed ID: 30069757 [Abstract] [Full Text] [Related]
13. Direct inhibition of PI3K in combination with dual HER2 inhibitors is required for optimal antitumor activity in HER2+ breast cancer cells. Rexer BN, Chanthaphaychith S, Dahlman K, Arteaga CL. Breast Cancer Res; 2014 Jan 23; 16(1):R9. PubMed ID: 24451154 [Abstract] [Full Text] [Related]
14. Novel Hsp90 inhibitor FW-04-806 displays potent antitumor effects in HER2-positive breast cancer cells as a single agent or in combination with lapatinib. Huang W, Wu QD, Zhang M, Kong YL, Cao PR, Zheng W, Xu JH, Ye M. Cancer Lett; 2015 Jan 28; 356(2 Pt B):862-71. PubMed ID: 25449780 [Abstract] [Full Text] [Related]
15. Novel mechanism of lapatinib resistance in HER2-positive breast tumor cells: activation of AXL. Liu L, Greger J, Shi H, Liu Y, Greshock J, Annan R, Halsey W, Sathe GM, Martin AM, Gilmer TM. Cancer Res; 2009 Sep 01; 69(17):6871-8. PubMed ID: 19671800 [Abstract] [Full Text] [Related]
16. Lapatinib, a dual HER1/HER2 tyrosine kinase inhibitor, augments basal cleavage of HER2 extracellular domain (ECD) to inhibit HER2-driven cancer cell growth. Vazquez-Martin A, Oliveras-Ferraros C, Cufí S, Del Barco S, Martin-Castillo B, Menendez JA. J Cell Physiol; 2011 Jan 01; 226(1):52-7. PubMed ID: 20658522 [Abstract] [Full Text] [Related]
17. Yes1 signaling mediates the resistance to Trastuzumab/Lap atinib in breast cancer. Takeda T, Yamamoto H, Kanzaki H, Suzawa K, Yoshioka T, Tomida S, Cui X, Murali R, Namba K, Sato H, Torigoe H, Watanabe M, Shien K, Soh J, Asano H, Tsukuda K, Kitamura Y, Miyoshi S, Sendo T, Toyooka S. PLoS One; 2017 Jan 01; 12(2):e0171356. PubMed ID: 28158234 [Abstract] [Full Text] [Related]
18. Autophagy-related gene 12 (ATG12) is a novel determinant of primary resistance to HER2-targeted therapies: utility of transcriptome analysis of the autophagy interactome to guide breast cancer treatment. Cufí S, Vazquez-Martin A, Oliveras-Ferraros C, Corominas-Faja B, Urruticoechea A, Martin-Castillo B, Menendez JA. Oncotarget; 2012 Dec 01; 3(12):1600-14. PubMed ID: 23307622 [Abstract] [Full Text] [Related]
19. Synergism from combined immunologic and pharmacologic inhibition of HER2 in vivo. Morse MA, Wei J, Hartman Z, Xia W, Ren XR, Lei G, Barry WT, Osada T, Hobeika AC, Peplinski S, Jiang H, Devi GR, Chen W, Spector N, Amalfitano A, Lyerly HK, Clay TM. Int J Cancer; 2010 Jun 15; 126(12):2893-903. PubMed ID: 19856307 [Abstract] [Full Text] [Related]
20. Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer. Scaltriti M, Rojo F, Ocaña A, Anido J, Guzman M, Cortes J, Di Cosimo S, Matias-Guiu X, Ramon y Cajal S, Arribas J, Baselga J. J Natl Cancer Inst; 2007 Apr 18; 99(8):628-38. PubMed ID: 17440164 [Abstract] [Full Text] [Related] Page: [Next] [New Search]