These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
121 related items for PubMed ID: 23535117
1. Comparisons of the chondroitin sulphate levels in orthodontically moved canines and the clinical outcomes between two different force magnitudes. Insee K, Pothacharoen P, Kongtawelert P, Ongchai S, Jotikasthira D, Krisanaprakornkit S. Eur J Orthod; 2014 Feb; 36(1):39-46. PubMed ID: 23535117 [Abstract] [Full Text] [Related]
2. Biochemical and clinical comparisons of segmental maxillary posterior tooth distal movement between two different force magnitudes. Limsiriwong S, Khemaleelakul W, Sirabanchongkran S, Pothacharoen P, Kongtawelert P, Ongchai S, Jotikasthira D. Eur J Orthod; 2018 Sep 28; 40(5):496-503. PubMed ID: 29253140 [Abstract] [Full Text] [Related]
3. Interleukin-1beta levels, pain intensity, and tooth movement using two different magnitudes of continuous orthodontic force. Luppanapornlarp S, Kajii TS, Surarit R, Iida J. Eur J Orthod; 2010 Oct 28; 32(5):596-601. PubMed ID: 20534713 [Abstract] [Full Text] [Related]
4. Chondroitin sulphate (WF6 epitope) levels in peri-miniscrew implant crevicular fluid during orthodontic loading. Intachai I, Krisanaprakornkit S, Kongtawelert P, Ong-chai S, Buranastidporn B, Suzuki EY, Jotikasthira D. Eur J Orthod; 2010 Feb 28; 32(1):60-5. PubMed ID: 19752017 [Abstract] [Full Text] [Related]
5. Effects on tooth movement of force delivery from nickel-titanium archwires. Baldwin PD, Pender N, Last KS. Eur J Orthod; 1999 Oct 28; 21(5):481-9. PubMed ID: 10565088 [Abstract] [Full Text] [Related]
6. Osteocalcin and N-telopeptides of type I collagen marker levels in gingival crevicular fluid during different stages of orthodontic tooth movement. Alfaqeeh SA, Anil S. Am J Orthod Dentofacial Orthop; 2011 Jun 28; 139(6):e553-9. PubMed ID: 21640867 [Abstract] [Full Text] [Related]
7. The effects of orthodontic tooth movement on the glycosaminoglycan components of gingival crevicular fluid. Samuels RH, Pender N, Last KS. J Clin Periodontol; 1993 May 28; 20(5):371-7. PubMed ID: 8501278 [Abstract] [Full Text] [Related]
8. The monitoring of orthodontic tooth movement over a 2-year period by analysis of gingival crevicular fluid. Pender N, Samuels RH, Last KS. Eur J Orthod; 1994 Dec 28; 16(6):511-20. PubMed ID: 7720796 [Abstract] [Full Text] [Related]
9. Crevicular alkaline phosphatase activity during the application of two patterns of orthodontic forces. AlSwafeeri H, ElKenany W, Mowafy M, Helmy M. J Orthod; 2015 Mar 28; 42(1):5-13. PubMed ID: 25808378 [Abstract] [Full Text] [Related]
10. Low-level laser therapy increases interleukin-1β in gingival crevicular fluid and enhances the rate of orthodontic tooth movement. Varella AM, Revankar AV, Patil AK. Am J Orthod Dentofacial Orthop; 2018 Oct 28; 154(4):535-544.e5. PubMed ID: 30268264 [Abstract] [Full Text] [Related]
11. Effect of orthodontic force magnitude on cytokine networks in gingival crevicular fluid: a longitudinal randomized split-mouth study. Afacan B, Öztürk VÖ, Geçgelen Cesur M, Köse T, Bostanci N. Eur J Orthod; 2019 Mar 29; 41(2):214-222. PubMed ID: 30321318 [Abstract] [Full Text] [Related]
12. Human interleukin-1 beta and interleukin-1 receptor antagonist secretion and velocity of tooth movement. Iwasaki LR, Haack JE, Nickel JC, Reinhardt RA, Petro TM. Arch Oral Biol; 2001 Feb 29; 46(2):185-9. PubMed ID: 11163326 [Abstract] [Full Text] [Related]
13. Levels of RANKL and OPG in gingival crevicular fluid during orthodontic tooth movement and effect of compression force on releases from periodontal ligament cells in vitro. Nishijima Y, Yamaguchi M, Kojima T, Aihara N, Nakajima R, Kasai K. Orthod Craniofac Res; 2006 May 29; 9(2):63-70. PubMed ID: 16764680 [Abstract] [Full Text] [Related]
14. Effects of diode laser (980 nm) on orthodontic tooth movement and interleukin 6 levels in gingival crevicular fluid in female subjects. Yassaei S, Aghili H, Afshari JT, Bagherpour A, Eslami F. Lasers Med Sci; 2016 Dec 29; 31(9):1751-1759. PubMed ID: 27680969 [Abstract] [Full Text] [Related]
15. Interleukin (IL)-1 beta, IL-6, tumor necrosis factor-alpha, epidermal growth factor, and beta 2-microglobulin levels are elevated in gingival crevicular fluid during human orthodontic tooth movement. Uematsu S, Mogi M, Deguchi T. J Dent Res; 1996 Jan 29; 75(1):562-7. PubMed ID: 8655760 [Abstract] [Full Text] [Related]
16. Vibratory stimulation increases interleukin-1 beta secretion during orthodontic tooth movement. Leethanakul C, Suamphan S, Jitpukdeebodintra S, Thongudomporn U, Charoemratrote C. Angle Orthod; 2016 Jan 29; 86(1):74-80. PubMed ID: 25811245 [Abstract] [Full Text] [Related]
17. Tooth movement and cytokines in gingival crevicular fluid and whole blood in growing and adult subjects. Iwasaki LR, Crouch LD, Tutor A, Gibson S, Hukmani N, Marx DB, Nickel JC. Am J Orthod Dentofacial Orthop; 2005 Oct 29; 128(4):483-91. PubMed ID: 16214631 [Abstract] [Full Text] [Related]
18. Matrix metalloproteinases and chemokines in the gingival crevicular fluid during orthodontic tooth movement. Capelli J, Kantarci A, Haffajee A, Teles RP, Fidel R, Figueredo CM. Eur J Orthod; 2011 Dec 29; 33(6):705-11. PubMed ID: 21389074 [Abstract] [Full Text] [Related]
19. The monitoring of gingival crevicular fluid volume during orthodontic treatment: a longitudinal randomized split-mouth study. Drummond S, Canavarro C, Perinetti G, Teles R, Capelli J. Eur J Orthod; 2012 Feb 29; 34(1):109-13. PubMed ID: 21273285 [Abstract] [Full Text] [Related]
20. Rate of tooth movement under heavy and light continuous orthodontic forces. Yee JA, Türk T, Elekdağ-Türk S, Cheng LL, Darendeliler MA. Am J Orthod Dentofacial Orthop; 2009 Aug 29; 136(2):150.e1-9; discussion 150-1. PubMed ID: 19651334 [Abstract] [Full Text] [Related] Page: [Next] [New Search]