These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
224 related items for PubMed ID: 23537026
41. Regulation of skeletal muscle mitochondrial fatty acid metabolism in lean and obese individuals. Holloway GP, Bonen A, Spriet LL. Am J Clin Nutr; 2009 Jan; 89(1):455S-62S. PubMed ID: 19056573 [Abstract] [Full Text] [Related]
42. Fatty acid binding protein facilitates sarcolemmal fatty acid transport but not mitochondrial oxidation in rat and human skeletal muscle. Holloway GP, Lally J, Nickerson JG, Alkhateeb H, Snook LA, Heigenhauser GJ, Calles-Escandon J, Glatz JF, Luiken JJ, Spriet LL, Bonen A. J Physiol; 2007 Jul 01; 582(Pt 1):393-405. PubMed ID: 17478525 [Abstract] [Full Text] [Related]
43. Treating fructose-induced metabolic changes in mice with high-intensity interval training: insights in the liver, white adipose tissue, and skeletal muscle. Motta VF, Bargut TL, Aguila MB, Mandarim-de-Lacerda CA. J Appl Physiol (1985); 2017 Oct 01; 123(4):699-709. PubMed ID: 28495843 [Abstract] [Full Text] [Related]
44. Metabolic cross-talk between skeletal muscle and adipose tissue in high-intensity interval training vs. moderate-intensity continuous training by regulation of PGC-1α. Shirvani H, Arabzadeh E. Eat Weight Disord; 2020 Feb 01; 25(1):17-24. PubMed ID: 29480414 [Abstract] [Full Text] [Related]
46. Similar changes in muscle lipid metabolism are induced by chronic high-fructose feeding and high-fat feeding in C57BL/J6 mice. Song GY, Ren LP, Chen SC, Wang C, Liu N, Wei LM, Li F, Sun W, Peng LB, Tang Y. Clin Exp Pharmacol Physiol; 2012 Dec 15; 39(12):1011-8. PubMed ID: 23039229 [Abstract] [Full Text] [Related]
47. Estrogen-related receptor alpha directs peroxisome proliferator-activated receptor alpha signaling in the transcriptional control of energy metabolism in cardiac and skeletal muscle. Huss JM, Torra IP, Staels B, Giguère V, Kelly DP. Mol Cell Biol; 2004 Oct 15; 24(20):9079-91. PubMed ID: 15456881 [Abstract] [Full Text] [Related]
49. Changes in skeletal muscle mitochondria in response to the development of type 2 diabetes or prevention by daily wheel running in hyperphagic OLETF rats. Rector RS, Uptergrove GM, Borengasser SJ, Mikus CR, Morris EM, Naples SP, Laye MJ, Laughlin MH, Booth FW, Ibdah JA, Thyfault JP. Am J Physiol Endocrinol Metab; 2010 Jun 15; 298(6):E1179-87. PubMed ID: 20233940 [Abstract] [Full Text] [Related]
50. Fatty acid-induced differential regulation of the genes encoding peroxisome proliferator-activated receptor-gamma coactivator-1alpha and -1beta in human skeletal muscle cells that have been differentiated in vitro. Staiger H, Staiger K, Haas C, Weisser M, Machicao F, Häring HU. Diabetologia; 2005 Oct 15; 48(10):2115-8. PubMed ID: 16132959 [Abstract] [Full Text] [Related]
51. Exercise activation of muscle peroxisome proliferator-activated receptor-gamma coactivator-1alpha signaling is redox sensitive. Kang C, O'Moore KM, Dickman JR, Ji LL. Free Radic Biol Med; 2009 Nov 15; 47(10):1394-400. PubMed ID: 19686839 [Abstract] [Full Text] [Related]
52. Intermittent and continuous high-intensity exercise training induce similar acute but different chronic muscle adaptations. Cochran AJ, Percival ME, Tricarico S, Little JP, Cermak N, Gillen JB, Tarnopolsky MA, Gibala MJ. Exp Physiol; 2014 May 01; 99(5):782-91. PubMed ID: 24532598 [Abstract] [Full Text] [Related]
53. Higher mitochondrial fatty acid oxidation following intermittent versus continuous endurance exercise training. Chilibeck PD, Bell GJ, Farrar RP, Martin TP. Can J Physiol Pharmacol; 1998 Sep 01; 76(9):891-4. PubMed ID: 10066139 [Abstract] [Full Text] [Related]
54. Contribution of FAT/CD36 to the regulation of skeletal muscle fatty acid oxidation: an overview. Holloway GP, Luiken JJ, Glatz JF, Spriet LL, Bonen A. Acta Physiol (Oxf); 2008 Dec 01; 194(4):293-309. PubMed ID: 18510711 [Abstract] [Full Text] [Related]
55. Dietary soya protein intake and exercise training have an additive effect on skeletal muscle fatty acid oxidation enzyme activities and mRNA levels in rats. Morifuji M, Sanbongi C, Sugiura K. Br J Nutr; 2006 Sep 01; 96(3):469-75. PubMed ID: 16925851 [Abstract] [Full Text] [Related]
56. Metformin and exercise reduce muscle FAT/CD36 and lipid accumulation and blunt the progression of high-fat diet-induced hyperglycemia. Smith AC, Mullen KL, Junkin KA, Nickerson J, Chabowski A, Bonen A, Dyck DJ. Am J Physiol Endocrinol Metab; 2007 Jul 01; 293(1):E172-81. PubMed ID: 17374701 [Abstract] [Full Text] [Related]
57. A novel function for fatty acid translocase (FAT)/CD36: involvement in long chain fatty acid transfer into the mitochondria. Campbell SE, Tandon NN, Woldegiorgis G, Luiken JJ, Glatz JF, Bonen A. J Biol Chem; 2004 Aug 27; 279(35):36235-41. PubMed ID: 15161924 [Abstract] [Full Text] [Related]
58. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. Gerhart-Hines Z, Rodgers JT, Bare O, Lerin C, Kim SH, Mostoslavsky R, Alt FW, Wu Z, Puigserver P. EMBO J; 2007 Apr 04; 26(7):1913-23. PubMed ID: 17347648 [Abstract] [Full Text] [Related]
59. Identification of fatty acid translocase on human skeletal muscle mitochondrial membranes: essential role in fatty acid oxidation. Bezaire V, Bruce CR, Heigenhauser GJ, Tandon NN, Glatz JF, Luiken JJ, Bonen A, Spriet LL. Am J Physiol Endocrinol Metab; 2006 Mar 04; 290(3):E509-15. PubMed ID: 16219667 [Abstract] [Full Text] [Related]
60. Two weeks of high-intensity interval training increases skeletal muscle mitochondrial respiration via complex-specific remodeling in sedentary humans. Batterson PM, McGowan EM, Stierwalt HD, Ehrlicher SE, Newsom SA, Robinson MM. J Appl Physiol (1985); 2023 Feb 01; 134(2):339-355. PubMed ID: 36603044 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]