These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


235 related items for PubMed ID: 2353806

  • 1. Anaerobic degradation of 1,3-propanediol by sulfate-reducing and by fermenting bacteria.
    Oppenberg B, Schink B.
    Antonie Van Leeuwenhoek; 1990 May; 57(4):205-13. PubMed ID: 2353806
    [Abstract] [Full Text] [Related]

  • 2. Fermentative degradation of polyethylene glycol by a strictly anaerobic, gram-negative, nonsporeforming bacterium, Pelobacter venetianus sp. nov.
    Schink B, Stieb M.
    Appl Environ Microbiol; 1983 Jun; 45(6):1905-13. PubMed ID: 6881964
    [Abstract] [Full Text] [Related]

  • 3. Syntrophus aciditrophicus sp. nov., a new anaerobic bacterium that degrades fatty acids and benzoate in syntrophic association with hydrogen-using microorganisms.
    Jackson BE, Bhupathiraju VK, Tanner RS, Woese CR, McInerney MJ.
    Arch Microbiol; 1999 Jan; 171(2):107-14. PubMed ID: 9914307
    [Abstract] [Full Text] [Related]

  • 4. Anaerobic degradation of sorbic acid by sulfate-reducing and fermenting bacteria: pentanone-2 and isopentanone-2 as byproducts.
    Schnell S, Wondrak C, Wahl G, Schink B.
    Biodegradation; 1991 Jan; 2(1):33-41. PubMed ID: 1368475
    [Abstract] [Full Text] [Related]

  • 5. Anaerobic degradation of 1,2-propanediol by a new Desulfovibrio strain and D. alcoholovorans.
    Ouattara AS, Cuzin N, Traore AS, Garcia JL.
    Arch Microbiol; 1992 Jan; 158(3):218-25. PubMed ID: 1332638
    [Abstract] [Full Text] [Related]

  • 6. Fermentative degradation of dipicolinic acid (pyridine-2,6-dicarboxylic acid) by a defined coculture of strictly anaerobic bacteria.
    Seyfried B, Schink B.
    Biodegradation; 1990 Jan; 1(1):1-7. PubMed ID: 1368138
    [Abstract] [Full Text] [Related]

  • 7. Pelotomaculum terephthalicum sp. nov. and Pelotomaculum isophthalicum sp. nov.: two anaerobic bacteria that degrade phthalate isomers in syntrophic association with hydrogenotrophic methanogens.
    Qiu YL, Sekiguchi Y, Hanada S, Imachi H, Tseng IC, Cheng SS, Ohashi A, Harada H, Kamagata Y.
    Arch Microbiol; 2006 Apr; 185(3):172-82. PubMed ID: 16404568
    [Abstract] [Full Text] [Related]

  • 8. Desulfovibrio carbinoliphilus sp. nov., a benzyl alcohol-oxidizing, sulfate-reducing bacterium isolated from a gas condensate-contaminated aquifer.
    Allen TD, Kraus PF, Lawson PA, Drake GR, Balkwill DL, Tanner RS.
    Int J Syst Evol Microbiol; 2008 Jun; 58(Pt 6):1313-7. PubMed ID: 18523171
    [Abstract] [Full Text] [Related]

  • 9. Anaerobic degradation of glycerol by desulfovibrio fructosovorans and D. carbinolicus and evidence for glycerol-dependent utilization of 1,2-propanediol.
    Qatibi AI, Bennisse R, Jana M, Garcia JL.
    Curr Microbiol; 1998 May; 36(5):283-90. PubMed ID: 9541565
    [Abstract] [Full Text] [Related]

  • 10. Syntrophobacter fumaroxidans sp. nov., a syntrophic propionate-degrading sulfate-reducing bacterium.
    Harmsen HJ, Van Kuijk BL, Plugge CM, Akkermans AD, De Vos WM, Stams AJ.
    Int J Syst Bacteriol; 1998 Oct; 48 Pt 4():1383-7. PubMed ID: 9828440
    [Abstract] [Full Text] [Related]

  • 11. Coexistence of a sulphate-reducing Desulfovibrio species and the dehalorespiring Desulfitobacterium frappieri TCE1 in defined chemostat cultures grown with various combinations of sulfate and tetrachloroethene.
    Drzyzga O, Gerritse J, Dijk JA, Elissen H, Gottschal JC.
    Environ Microbiol; 2001 Feb; 3(2):92-9. PubMed ID: 11321548
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Desulfovibrio aminophilus sp. nov., a novel amino acid degrading and sulfate reducing bacterium from an anaerobic dairy wastewater lagoon.
    Baena S, Fardeau ML, Labat M, Ollivier B, Garcia JL, Patel BK.
    Syst Appl Microbiol; 1998 Dec; 21(4):498-504. PubMed ID: 9924817
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Sulfate reduction by a syntrophic propionate-oxidizing bacterium.
    Van Kuijk BL, Stams AJ.
    Antonie Van Leeuwenhoek; 1995 Nov; 68(4):293-6. PubMed ID: 8821784
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium.
    Pfennig N, Biebl H.
    Arch Microbiol; 1976 Oct 11; 110(1):3-12. PubMed ID: 1015937
    [Abstract] [Full Text] [Related]

  • 20. Nutritional aspects of dissimilatory sulfate reduction in the human large intestine.
    Willis CL, Cummings JH, Neale G, Gibson GR.
    Curr Microbiol; 1997 Nov 11; 35(5):294-8. PubMed ID: 9462959
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.