These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


164 related items for PubMed ID: 23545202

  • 1. Microstructure-based constitutive modeling for the large intestine validated by histological observations.
    Sokolis DP, Sassani SG.
    J Mech Behav Biomed Mater; 2013 May; 21():149-66. PubMed ID: 23545202
    [Abstract] [Full Text] [Related]

  • 2. Experimental investigation and constitutive modeling of the 3D histomechanical properties of vein tissue.
    Sokolis DP.
    Biomech Model Mechanobiol; 2013 Jun; 12(3):431-51. PubMed ID: 22706981
    [Abstract] [Full Text] [Related]

  • 3. Biomechanical and histological characteristics of passive esophagus: experimental investigation and comparative constitutive modeling.
    Stavropoulou EA, Dafalias YF, Sokolis DP.
    J Biomech; 2009 Dec 11; 42(16):2654-63. PubMed ID: 19766221
    [Abstract] [Full Text] [Related]

  • 4. Mechanical anisotropy of inflated elastic tissue from the pig aorta.
    Lillie MA, Shadwick RE, Gosline JM.
    J Biomech; 2010 Aug 10; 43(11):2070-8. PubMed ID: 20430395
    [Abstract] [Full Text] [Related]

  • 5. Biomechanical testing and material characterization for the rat large intestine: regional dependence of material parameters.
    Sokolis DP, Orfanidis IK, Peroulis M.
    Physiol Meas; 2011 Dec 10; 32(12):1969-82. PubMed ID: 22056976
    [Abstract] [Full Text] [Related]

  • 6. Mechanical behavior of annulus fibrosus: a microstructural model of fibers reorientation.
    Ambard D, Cherblanc F.
    Ann Biomed Eng; 2009 Nov 10; 37(11):2256-65. PubMed ID: 19609835
    [Abstract] [Full Text] [Related]

  • 7. A new constitutive model for multi-layered collagenous tissues.
    Kroon M, Holzapfel GA.
    J Biomech; 2008 Aug 28; 41(12):2766-71. PubMed ID: 18657813
    [Abstract] [Full Text] [Related]

  • 8. Stress relaxation of swine growth plate in semi-confined compression: depth dependent tissue deformational behavior versus extracellular matrix composition and collagen fiber organization.
    Amini S, Mortazavi F, Sun J, Levesque M, Hoemann CD, Villemure I.
    Biomech Model Mechanobiol; 2013 Jan 28; 12(1):67-78. PubMed ID: 22446833
    [Abstract] [Full Text] [Related]

  • 9. Variation of Passive Biomechanical Properties of the Small Intestine along Its Length: Microstructure-Based Characterization.
    Sokolis DP.
    Bioengineering (Basel); 2021 Feb 26; 8(3):. PubMed ID: 33652760
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. A continuous fiber distribution material model for human cervical tissue.
    Myers KM, Hendon CP, Gan Y, Yao W, Yoshida K, Fernandez M, Vink J, Wapner RJ.
    J Biomech; 2015 Jun 25; 48(9):1533-40. PubMed ID: 25817474
    [Abstract] [Full Text] [Related]

  • 12. The role of viscoelasticity of collagen fibers in articular cartilage: axial tension versus compression.
    Li LP, Herzog W, Korhonen RK, Jurvelin JS.
    Med Eng Phys; 2005 Jan 25; 27(1):51-7. PubMed ID: 15604004
    [Abstract] [Full Text] [Related]

  • 13. Viscoelasticity and preconditioning of rat skin under uniaxial stretch: microstructural constitutive characterization.
    Lokshin O, Lanir Y.
    J Biomech Eng; 2009 Mar 25; 131(3):031009. PubMed ID: 19154068
    [Abstract] [Full Text] [Related]

  • 14. A phenomenological approach toward patient-specific computational modeling of articular cartilage including collagen fiber tracking.
    Pierce DM, Trobin W, Trattnig S, Bischof H, Holzapfel GA.
    J Biomech Eng; 2009 Sep 25; 131(9):091006. PubMed ID: 19725695
    [Abstract] [Full Text] [Related]

  • 15. Structural characterization and viscoelastic constitutive modeling of skin.
    Sherman VR, Tang Y, Zhao S, Yang W, Meyers MA.
    Acta Biomater; 2017 Apr 15; 53():460-469. PubMed ID: 28219806
    [Abstract] [Full Text] [Related]

  • 16. Agent-based modeling traction force mediated compaction of cell-populated collagen gels using physically realistic fibril mechanics.
    Reinhardt JW, Gooch KJ.
    J Biomech Eng; 2014 Feb 15; 136(2):021024. PubMed ID: 24317298
    [Abstract] [Full Text] [Related]

  • 17. 3D Mechanical properties of the layered esophagus: experiment and constitutive model.
    Yang W, Fung TC, Chian KS, Chong CK.
    J Biomech Eng; 2006 Dec 15; 128(6):899-908. PubMed ID: 17154692
    [Abstract] [Full Text] [Related]

  • 18. Experimental characterization and constitutive modeling of the mechanical behavior of the human trachea.
    Trabelsi O, del Palomar AP, López-Villalobos JL, Ginel A, Doblaré M.
    Med Eng Phys; 2010 Jan 15; 32(1):76-82. PubMed ID: 19926513
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.