These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


470 related items for PubMed ID: 23559548

  • 1. Cell biological responses of osteoblasts on anodized nanotubular surface of a titanium-zirconium alloy.
    Sista S, Nouri A, Li Y, Wen C, Hodgson PD, Pande G.
    J Biomed Mater Res A; 2013 Dec; 101(12):3416-30. PubMed ID: 23559548
    [Abstract] [Full Text] [Related]

  • 2. Expression of cell adhesion and differentiation related genes in MC3T3 osteoblasts plated on titanium alloys: role of surface properties.
    Sista S, Wen C, Hodgson PD, Pande G.
    Mater Sci Eng C Mater Biol Appl; 2013 Apr 01; 33(3):1573-82. PubMed ID: 23827610
    [Abstract] [Full Text] [Related]

  • 3. The influence of surface energy of titanium-zirconium alloy on osteoblast cell functions in vitro.
    Sista S, Wen C, Hodgson PD, Pande G.
    J Biomed Mater Res A; 2011 Apr 01; 97(1):27-36. PubMed ID: 21308982
    [Abstract] [Full Text] [Related]

  • 4. Spark anodization of titanium-zirconium alloy: surface characterization and bioactivity assessment.
    Sharma A, McQuillan AJ, Sharma LA, Waddell JN, Shibata Y, Duncan WJ.
    J Mater Sci Mater Med; 2015 Aug 01; 26(8):221. PubMed ID: 26260697
    [Abstract] [Full Text] [Related]

  • 5. The two step nanotube formation on TiZr as scaffolds for cell growth.
    Grigorescu S, Pruna V, Titorencu I, Jinga VV, Mazare A, Schmuki P, Demetrescu I.
    Bioelectrochemistry; 2014 Aug 01; 98():39-45. PubMed ID: 24662040
    [Abstract] [Full Text] [Related]

  • 6. Molecular plasma deposited peptides on anodized nanotubular titanium: an osteoblast density study.
    Balasundaram G, Shimpi TM, Sanow WR, Storey DM, Kitchell BS, Webster TJ.
    J Biomed Mater Res A; 2011 Aug 01; 98(2):192-200. PubMed ID: 21548070
    [Abstract] [Full Text] [Related]

  • 7. Effect of surface treatment on cell responses to grades 4 and 5 titanium for orthodontic mini-implants.
    Galli C, Piemontese M, Ravanetti F, Lumetti S, Passeri G, Gandolfini M, Macaluso GM.
    Am J Orthod Dentofacial Orthop; 2012 Jun 01; 141(6):705-14. PubMed ID: 22640672
    [Abstract] [Full Text] [Related]

  • 8. Surface nanotopography-induced favorable modulation of bioactivity and osteoconductive potential of anodized 3D printed Ti-6Al-4V alloy mesh structure.
    Nune KC, Misra R, Gai X, Li SJ, Hao YL.
    J Biomater Appl; 2018 Mar 01; 32(8):1032-1048. PubMed ID: 29249195
    [Abstract] [Full Text] [Related]

  • 9. Surface modifications and cell-materials interactions with anodized Ti.
    Das K, Bose S, Bandyopadhyay A.
    Acta Biomater; 2007 Jul 01; 3(4):573-85. PubMed ID: 17320494
    [Abstract] [Full Text] [Related]

  • 10. TiO2 nanotubes on Ti: Influence of nanoscale morphology on bone cell-materials interaction.
    Das K, Bose S, Bandyopadhyay A.
    J Biomed Mater Res A; 2009 Jul 01; 90(1):225-37. PubMed ID: 18496867
    [Abstract] [Full Text] [Related]

  • 11. Role of grain size in the regulation of osteoblast response to Ti-25Nb-3Mo-3Zr-2Sn alloy.
    Huang R, Lu S, Han Y.
    Colloids Surf B Biointerfaces; 2013 Nov 01; 111():232-41. PubMed ID: 23831591
    [Abstract] [Full Text] [Related]

  • 12. The effect of anatase TiO2 nanotube layers on MC3T3-E1 preosteoblast adhesion, proliferation, and differentiation.
    Yu WQ, Jiang XQ, Zhang FQ, Xu L.
    J Biomed Mater Res A; 2010 Sep 15; 94(4):1012-22. PubMed ID: 20694968
    [Abstract] [Full Text] [Related]

  • 13. Effect of Anodized TiO2-Nb2O5-ZrO2 Nanotubes with Different Nanoscale Dimensions on the Biocompatibility of a Ti35Zr28Nb Alloy.
    Qadir M, Lin J, Biesiekierski A, Li Y, Wen C.
    ACS Appl Mater Interfaces; 2020 Feb 05; 12(5):6776-6787. PubMed ID: 31917541
    [Abstract] [Full Text] [Related]

  • 14. Modified surface morphology of a novel Ti-24Nb-4Zr-7.9Sn titanium alloy via anodic oxidation for enhanced interfacial biocompatibility and osseointegration.
    Li X, Chen T, Hu J, Li S, Zou Q, Li Y, Jiang N, Li H, Li J.
    Colloids Surf B Biointerfaces; 2016 Aug 01; 144():265-275. PubMed ID: 27100853
    [Abstract] [Full Text] [Related]

  • 15. Anodized 3D-printed titanium implants with dual micro- and nano-scale topography promote interaction with human osteoblasts and osteocyte-like cells.
    Gulati K, Prideaux M, Kogawa M, Lima-Marques L, Atkins GJ, Findlay DM, Losic D.
    J Tissue Eng Regen Med; 2017 Dec 01; 11(12):3313-3325. PubMed ID: 27925441
    [Abstract] [Full Text] [Related]

  • 16. Effects of phosphoric acid treatment of titanium surfaces on surface properties, osteoblast response and removal of torque forces.
    Park JW, Kim YJ, Jang JH, Kwon TG, Bae YC, Suh JY.
    Acta Biomater; 2010 Apr 01; 6(4):1661-70. PubMed ID: 19819355
    [Abstract] [Full Text] [Related]

  • 17. The gene-expression and phenotypic response of hFOB 1.19 osteoblasts to surface-modified titanium and zirconia.
    Setzer B, Bächle M, Metzger MC, Kohal RJ.
    Biomaterials; 2009 Feb 01; 30(6):979-90. PubMed ID: 19027946
    [Abstract] [Full Text] [Related]

  • 18. Adhesion pattern and growth of primary human osteoblastic cells on five commercially available titanium surfaces.
    Passeri G, Cacchioli A, Ravanetti F, Galli C, Elezi E, Macaluso GM.
    Clin Oral Implants Res; 2010 Jul 01; 21(7):756-65. PubMed ID: 20636730
    [Abstract] [Full Text] [Related]

  • 19. Distinct cell functions of osteoblasts on UV-functionalized titanium- and zirconia-based implant materials are modulated by surface topography.
    Altmann B, Kohal RJ, Steinberg T, Tomakidi P, Bächle-Haas M, Wennerberg A, Att W.
    Tissue Eng Part C Methods; 2013 Nov 01; 19(11):850-63. PubMed ID: 23581275
    [Abstract] [Full Text] [Related]

  • 20. The effect of biphasic electrical stimulation on osteoblast function at anodized nanotubular titanium surfaces.
    Ercan B, Webster TJ.
    Biomaterials; 2010 May 01; 31(13):3684-93. PubMed ID: 20149926
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 24.