These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


339 related items for PubMed ID: 23559856

  • 1. Comparative proteomics analysis of degenerative eye lenses of nocturnal rice eel and catfish as compared to diurnal zebrafish.
    Lin YR, Mok HK, Wu YH, Liang SS, Hsiao CC, Huang CH, Chiou SH.
    Mol Vis; 2013; 19():623-37. PubMed ID: 23559856
    [Abstract] [Full Text] [Related]

  • 2. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V, Srivastava OP, Kirk M.
    Mol Vis; 2007 Sep 14; 13():1680-94. PubMed ID: 17893670
    [Abstract] [Full Text] [Related]

  • 3. Lens proteome map and alpha-crystallin profile of the catfish Rita rita.
    Mohanty BP, Bhattacharjee S, Das MK.
    Indian J Biochem Biophys; 2011 Feb 14; 48(1):35-41. PubMed ID: 21469600
    [Abstract] [Full Text] [Related]

  • 4. Changes in zebrafish (Danio rerio) lens crystallin content during development.
    Wages P, Horwitz J, Ding L, Corbin RW, Posner M.
    Mol Vis; 2013 Feb 14; 19():408-17. PubMed ID: 23441112
    [Abstract] [Full Text] [Related]

  • 5. Molecular diversity and genomic organisation of the alpha, beta and gamma eye lens crystallins from the Antarctic toothfish Dissostichus mawsoni.
    Kiss AJ, Cheng CH.
    Comp Biochem Physiol Part D Genomics Proteomics; 2008 Jun 14; 3(2):155-71. PubMed ID: 20483216
    [Abstract] [Full Text] [Related]

  • 6. Identification of in vivo phosphorylation sites of lens proteins from porcine eye lenses by a gel-free phosphoproteomics approach.
    Chiou SH, Huang CH, Lee IL, Wang YT, Liu NY, Tsay YG, Chen YJ.
    Mol Vis; 2010 Feb 24; 16():294-302. PubMed ID: 20182557
    [Abstract] [Full Text] [Related]

  • 7. A proteome map of the zebrafish (Danio rerio) lens reveals similarities between zebrafish and mammalian crystallin expression.
    Posner M, Hawke M, Lacava C, Prince CJ, Bellanco NR, Corbin RW.
    Mol Vis; 2008 Apr 25; 14():806-14. PubMed ID: 18449354
    [Abstract] [Full Text] [Related]

  • 8. Proteomics analysis of water insoluble-urea soluble crystallins from normal and dexamethasone exposed lens.
    Wang L, Liu D, Liu P, Yu Y.
    Mol Vis; 2011 Apr 25; 17():3423-36. PubMed ID: 22219638
    [Abstract] [Full Text] [Related]

  • 9. Measurement of absolute abundance of crystallins in human and αA N101D transgenic mouse lenses using 15N-labeled crystallin standards.
    Halverson-Kolkind KA, Caputo N, Lampi KJ, Srivastava O, David LL.
    Exp Eye Res; 2024 Nov 25; 248():110115. PubMed ID: 39368693
    [Abstract] [Full Text] [Related]

  • 10. Alterations to proteins in the lens of hereditary Crygs-mutated cataractous mice.
    Ji Y, Bi H, Li N, Jin H, Yang P, Kong X, Yan S, Lu Y.
    Mol Vis; 2010 Jun 11; 16():1068-75. PubMed ID: 20596256
    [Abstract] [Full Text] [Related]

  • 11. Proteomic analysis of human age-related nuclear cataracts and normal lens nuclei.
    Su S, Liu P, Zhang H, Li Z, Song Z, Zhang L, Chen S.
    Invest Ophthalmol Vis Sci; 2011 Jun 13; 52(7):4182-91. PubMed ID: 21436267
    [Abstract] [Full Text] [Related]

  • 12. In vivo substrates of the lens molecular chaperones αA-crystallin and αB-crystallin.
    Andley UP, Malone JP, Townsend RR.
    PLoS One; 2014 Jun 13; 9(4):e95507. PubMed ID: 24760011
    [Abstract] [Full Text] [Related]

  • 13. Isolation and characterization of betaA3-crystallin associated proteinase from alpha-crystallin fraction of human lenses.
    Srivastava OP, Srivastava K, Chaves JM.
    Mol Vis; 2008 Jun 13; 14():1872-85. PubMed ID: 18949065
    [Abstract] [Full Text] [Related]

  • 14. Lens proteomics: analysis of rat crystallins when lenses are exposed to dexamethasone.
    Wang L, Zhao WC, Yin XL, Ge JY, Bu ZG, Ge HY, Meng QF, Liu P.
    Mol Biosyst; 2012 Mar 13; 8(3):888-901. PubMed ID: 22269969
    [Abstract] [Full Text] [Related]

  • 15. Comparative proteomic analysis identifies age-dependent increases in the abundance of specific proteins after deletion of the small heat shock proteins αA- and αB-crystallin.
    Andley UP, Malone JP, Hamilton PD, Ravi N, Townsend RR.
    Biochemistry; 2013 Apr 30; 52(17):2933-48. PubMed ID: 23590631
    [Abstract] [Full Text] [Related]

  • 16. Loss of αBa-crystallin, but not αA-crystallin, increases age-related cataract in the zebrafish lens.
    Posner M, Garver T, Kaye T, Brdicka S, Suttle M, Patterson B, Farnsworth DR.
    Exp Eye Res; 2024 Jul 30; 244():109918. PubMed ID: 38705506
    [Abstract] [Full Text] [Related]

  • 17. Susceptibility of ovine lens crystallins to proteolytic cleavage during formation of hereditary cataract.
    Robertson LJ, David LL, Riviere MA, Wilmarth PA, Muir MS, Morton JD.
    Invest Ophthalmol Vis Sci; 2008 Mar 30; 49(3):1016-22. PubMed ID: 18326725
    [Abstract] [Full Text] [Related]

  • 18. BetaB2-crystallin undergoes extensive truncation during aging in human lenses.
    Srivastava OP, Srivastava K.
    Biochem Biophys Res Commun; 2003 Jan 31; 301(1):44-9. PubMed ID: 12535638
    [Abstract] [Full Text] [Related]

  • 19. Quantitative measurement of young human eye lens crystallins by direct injection Fourier transform ion cyclotron resonance mass spectrometry.
    Robinson NE, Lampi KJ, Speir JP, Kruppa G, Easterling M, Robinson AB.
    Mol Vis; 2006 Jun 21; 12():704-11. PubMed ID: 16807530
    [Abstract] [Full Text] [Related]

  • 20. Characterization of gammaS-crystallin isoforms from a catfish: evolutionary comparison of various gamma-, gammaS-, and beta-crystallins.
    Chiou SH, Pan FM, Peng HW, Chao YK, Chang WC.
    Biochem Biophys Res Commun; 1998 Nov 18; 252(2):412-9. PubMed ID: 9826544
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.