These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


204 related items for PubMed ID: 23564203

  • 1. DNA replication checkpoint signaling depends on a Rad53-Dbf4 N-terminal interaction in Saccharomyces cerevisiae.
    Chen YC, Kenworthy J, Gabrielse C, Hänni C, Zegerman P, Weinreich M.
    Genetics; 2013 Jun; 194(2):389-401. PubMed ID: 23564203
    [Abstract] [Full Text] [Related]

  • 2. A novel non-canonical forkhead-associated (FHA) domain-binding interface mediates the interaction between Rad53 and Dbf4 proteins.
    Matthews LA, Selvaratnam R, Jones DR, Akimoto M, McConkey BJ, Melacini G, Duncker BP, Guarné A.
    J Biol Chem; 2014 Jan 31; 289(5):2589-99. PubMed ID: 24285546
    [Abstract] [Full Text] [Related]

  • 3. Saccharomyces cerevisiae Dbf4 has unique fold necessary for interaction with Rad53 kinase.
    Matthews LA, Jones DR, Prasad AA, Duncker BP, Guarné A.
    J Biol Chem; 2012 Jan 20; 287(4):2378-87. PubMed ID: 22130670
    [Abstract] [Full Text] [Related]

  • 4. Checkpoint-dependent inhibition of DNA replication initiation by Sld3 and Dbf4 phosphorylation.
    Zegerman P, Diffley JF.
    Nature; 2010 Sep 23; 467(7314):474-8. PubMed ID: 20835227
    [Abstract] [Full Text] [Related]

  • 5. Rad53 kinase activation-independent replication checkpoint function of the N-terminal forkhead-associated (FHA1) domain.
    Pike BL, Tenis N, Heierhorst J.
    J Biol Chem; 2004 Sep 17; 279(38):39636-44. PubMed ID: 15271990
    [Abstract] [Full Text] [Related]

  • 6. Concerted activities of Mcm4, Sld3, and Dbf4 in control of origin activation and DNA replication fork progression.
    Sheu YJ, Kinney JB, Stillman B.
    Genome Res; 2016 Mar 17; 26(3):315-30. PubMed ID: 26733669
    [Abstract] [Full Text] [Related]

  • 7. FHA domain-mediated DNA checkpoint regulation of Rad53.
    Schwartz MF, Lee SJ, Duong JK, Eminaga S, Stern DF.
    Cell Cycle; 2003 Mar 17; 2(4):384-96. PubMed ID: 12851493
    [Abstract] [Full Text] [Related]

  • 8. A Dbf4 mutant contributes to bypassing the Rad53-mediated block of origins of replication in response to genotoxic stress.
    Duch A, Palou G, Jonsson ZO, Palou R, Calvo E, Wohlschlegel J, Quintana DG.
    J Biol Chem; 2011 Jan 28; 286(4):2486-91. PubMed ID: 21098477
    [Abstract] [Full Text] [Related]

  • 9. Use of quantitative mass spectrometric analysis to elucidate the mechanisms of phospho-priming and auto-activation of the checkpoint kinase Rad53 in vivo.
    Chen ES, Hoch NC, Wang SC, Pellicioli A, Heierhorst J, Tsai MD.
    Mol Cell Proteomics; 2014 Feb 28; 13(2):551-65. PubMed ID: 24302356
    [Abstract] [Full Text] [Related]

  • 10. Structural mechanism for the selective phosphorylation of DNA-loaded MCM double hexamers by the Dbf4-dependent kinase.
    Greiwe JF, Miller TCR, Locke J, Martino F, Howell S, Schreiber A, Nans A, Diffley JFX, Costa A.
    Nat Struct Mol Biol; 2022 Jan 28; 29(1):10-20. PubMed ID: 34963704
    [Abstract] [Full Text] [Related]

  • 11. Damage-induced phosphorylation of Sld3 is important to block late origin firing.
    Lopez-Mosqueda J, Maas NL, Jonsson ZO, Defazio-Eli LG, Wohlschlegel J, Toczyski DP.
    Nature; 2010 Sep 23; 467(7314):479-83. PubMed ID: 20865002
    [Abstract] [Full Text] [Related]

  • 12. Antagonistic control of DDK binding to licensed replication origins by Mcm2 and Rad53.
    Abd Wahab S, Remus D.
    Elife; 2020 Jul 23; 9():. PubMed ID: 32701054
    [Abstract] [Full Text] [Related]

  • 13. Novel role for checkpoint Rad53 protein kinase in the initiation of chromosomal DNA replication in Saccharomyces cerevisiae.
    Dohrmann PR, Sclafani RA.
    Genetics; 2006 Sep 23; 174(1):87-99. PubMed ID: 16816422
    [Abstract] [Full Text] [Related]

  • 14. Checkpoint inhibition of origin firing prevents inappropriate replication outside of S-phase.
    Johnson MC, Can G, Santos MM, Alexander D, Zegerman P.
    Elife; 2021 Jan 05; 10():. PubMed ID: 33399537
    [Abstract] [Full Text] [Related]

  • 15. Helicase Subunit Cdc45 Targets the Checkpoint Kinase Rad53 to Both Replication Initiation and Elongation Complexes after Fork Stalling.
    Can G, Kauerhof AC, Macak D, Zegerman P.
    Mol Cell; 2019 Feb 07; 73(3):562-573.e3. PubMed ID: 30595439
    [Abstract] [Full Text] [Related]

  • 16. The role of the Saccharomyces cerevisiae Cdc7-Dbf4 complex in the replication checkpoint.
    Ogi H, Wang CZ, Nakai W, Kawasaki Y, Masumoto H.
    Gene; 2008 May 15; 414(1-2):32-40. PubMed ID: 18372119
    [Abstract] [Full Text] [Related]

  • 17. 'AND' logic gates at work: Crystal structure of Rad53 bound to Dbf4 and Cdc7.
    Almawi AW, Matthews LA, Larasati, Myrox P, Boulton S, Lai C, Moraes T, Melacini G, Ghirlando R, Duncker BP, Guarné A.
    Sci Rep; 2016 Sep 29; 6():34237. PubMed ID: 27681475
    [Abstract] [Full Text] [Related]

  • 18. Rad53 checkpoint kinase regulation of DNA replication fork rate via Mrc1 phosphorylation.
    McClure AW, Diffley JF.
    Elife; 2021 Aug 13; 10():. PubMed ID: 34387546
    [Abstract] [Full Text] [Related]

  • 19. Firing of Replication Origins Frees Dbf4-Cdc7 to Target Eco1 for Destruction.
    Seoane AI, Morgan DO.
    Curr Biol; 2017 Sep 25; 27(18):2849-2855.e2. PubMed ID: 28918948
    [Abstract] [Full Text] [Related]

  • 20. Domain within the helicase subunit Mcm4 integrates multiple kinase signals to control DNA replication initiation and fork progression.
    Sheu YJ, Kinney JB, Lengronne A, Pasero P, Stillman B.
    Proc Natl Acad Sci U S A; 2014 May 06; 111(18):E1899-908. PubMed ID: 24740181
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.