These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
303 related items for PubMed ID: 23566332
41. Bromate removal from water by granular ferric hydroxide (GFH). Bhatnagar A, Choi Y, Yoon Y, Shin Y, Jeon BH, Kang JW. J Hazard Mater; 2009 Oct 15; 170(1):134-40. PubMed ID: 19481866 [Abstract] [Full Text] [Related]
42. Maghemite nanoparticles for As(V) removal: desorption characteristics and adsorbent recovery. Tuutijärvi T, Vahalaa R, Sillanpitää M, Chen G. Environ Technol; 2012 Sep 15; 33(16-18):1927-36. PubMed ID: 23240185 [Abstract] [Full Text] [Related]
43. Evaluation of natural goethite on the removal of arsenate and selenite from water. Jacobson AT, Fan M. J Environ Sci (China); 2019 Feb 15; 76():133-141. PubMed ID: 30528005 [Abstract] [Full Text] [Related]
44. Arsenate removal from contaminated water using Fe2O3-clinoptilolite powder and granule. Tahmasebpoor M, Hosseini Nami S, Khatamian M, Sanaei L. Environ Technol; 2022 Jan 15; 43(1):116-130. PubMed ID: 32508275 [Abstract] [Full Text] [Related]
46. Impacts of amount of impregnated iron in granular activated carbon on arsenate adsorption capacities and kinetics. Chang Q, Lin W, Ying WC. Water Environ Res; 2012 Jun 15; 84(6):514-20. PubMed ID: 22866392 [Abstract] [Full Text] [Related]
47. Removal of arsenate by cetyltrimethylammonium bromide modified magnetic nanoparticles. Jin Y, Liu F, Tong M, Hou Y. J Hazard Mater; 2012 Aug 15; 227-228():461-8. PubMed ID: 22703733 [Abstract] [Full Text] [Related]
48. Assessment of schwertmannite, jarosite and goethite as adsorbents for efficient adsorption of phenanthrene in water and the regeneration of spent adsorbents by heterogeneous fenton-like reaction. Meng X, Zhang C, Zhuang J, Zheng G, Zhou L. Chemosphere; 2020 Apr 15; 244():125523. PubMed ID: 31812054 [Abstract] [Full Text] [Related]
49. Determination of surface properties of iron hydroxide-coated alumina adsorbent prepared for removal of arsenic from drinking water. Hlavay J, Polyák K. J Colloid Interface Sci; 2005 Apr 01; 284(1):71-7. PubMed ID: 15752786 [Abstract] [Full Text] [Related]
50. Effects of water chemistry and flow rate on arsenate removal by adsorption to an iron oxide-based sorbent. Zeng H, Arashiro M, Giammar DE. Water Res; 2008 Nov 01; 42(18):4629-36. PubMed ID: 18786691 [Abstract] [Full Text] [Related]
51. Removal of arsenic(V) from spent ion exchange brine using a new class of starch-bridged magnetite nanoparticles. An B, Liang Q, Zhao D. Water Res; 2011 Feb 01; 45(5):1961-72. PubMed ID: 21288549 [Abstract] [Full Text] [Related]
52. Synthesis of magnetite from raw mill scale and its application for arsenate adsorption from contaminated water. Shahid MK, Phearom S, Choi YG. Chemosphere; 2018 Jul 01; 203():90-95. PubMed ID: 29614414 [Abstract] [Full Text] [Related]
53. Iron coated pottery granules for arsenic removal from drinking water. Dong L, Zinin PV, Cowen JP, Ming LC. J Hazard Mater; 2009 Sep 15; 168(2-3):626-32. PubMed ID: 19356847 [Abstract] [Full Text] [Related]
54. [Removal of arsenate by a new type of ion exchange fiber]. Liu R, Wang Y, Tang H. Huan Jing Ke Xue; 2002 Sep 15; 23(5):88-91. PubMed ID: 12533934 [Abstract] [Full Text] [Related]
55. [Removal of arsenate from drinking water by activated carbon supported nano zero-valent iron]. Zhu HJ, Jia YF, Yao SH, Wu X, Wang SY. Huan Jing Ke Xue; 2009 Dec 15; 30(12):3562-7. PubMed ID: 20187387 [Abstract] [Full Text] [Related]
56. Removal of arsenic from water by supported nano zero-valent iron on activated carbon. Zhu H, Jia Y, Wu X, Wang H. J Hazard Mater; 2009 Dec 30; 172(2-3):1591-6. PubMed ID: 19733972 [Abstract] [Full Text] [Related]
57. Zerovalent iron encapsulated chitosan nanospheres - a novel adsorbent for the removal of total inorganic arsenic from aqueous systems. Gupta A, Yunus M, Sankararamakrishnan N. Chemosphere; 2012 Jan 30; 86(2):150-5. PubMed ID: 22079302 [Abstract] [Full Text] [Related]
58. Extended triple layer modeling of arsenate and phosphate adsorption on a goethite-based granular porous adsorbent. Kanematsu M, Young TM, Fukushi K, Green PG, Darby JL. Environ Sci Technol; 2010 May 01; 44(9):3388-94. PubMed ID: 20355701 [Abstract] [Full Text] [Related]
59. [Comparison of the adsorption of arsenite and arsenate anions from aqueous solution by calcined Mg-Al layered double hydroxides]. Xing K, Wang HZ, Li XY. Huan Jing Ke Xue; 2009 Mar 15; 30(3):748-54. PubMed ID: 19432322 [Abstract] [Full Text] [Related]
60. Rejected tea as a potential low-cost adsorbent for the removal of methylene blue. Nasuha N, Hameed BH, Din AT. J Hazard Mater; 2010 Mar 15; 175(1-3):126-32. PubMed ID: 19879046 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]