These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


423 related items for PubMed ID: 23569232

  • 1. Evolutionary change during experimental ocean acidification.
    Pespeni MH, Sanford E, Gaylord B, Hill TM, Hosfelt JD, Jaris HK, LaVigne M, Lenz EA, Russell AD, Young MK, Palumbi SR.
    Proc Natl Acad Sci U S A; 2013 Apr 23; 110(17):6937-42. PubMed ID: 23569232
    [Abstract] [Full Text] [Related]

  • 2. Signs of adaptation to local pH conditions across an environmental mosaic in the California Current Ecosystem.
    Pespeni MH, Chan F, Menge BA, Palumbi SR.
    Integr Comp Biol; 2013 Nov 23; 53(5):857-70. PubMed ID: 23980118
    [Abstract] [Full Text] [Related]

  • 3. Ocean acidification research in the 'post-genomic' era: Roadmaps from the purple sea urchin Strongylocentrotus purpuratus.
    Evans TG, Padilla-Gamiño JL, Kelly MW, Pespeni MH, Chan F, Menge BA, Gaylord B, Hill TM, Russell AD, Palumbi SR, Sanford E, Hofmann GE.
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Jul 23; 185():33-42. PubMed ID: 25773301
    [Abstract] [Full Text] [Related]

  • 4. Transcriptomic responses to seawater acidification among sea urchin populations inhabiting a natural pH mosaic.
    Evans TG, Pespeni MH, Hofmann GE, Palumbi SR, Sanford E.
    Mol Ecol; 2017 Apr 23; 26(8):2257-2275. PubMed ID: 28141889
    [Abstract] [Full Text] [Related]

  • 5. Natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrotus purpuratus.
    Kelly MW, Padilla-Gamiño JL, Hofmann GE.
    Glob Chang Biol; 2013 Aug 23; 19(8):2536-46. PubMed ID: 23661315
    [Abstract] [Full Text] [Related]

  • 6. Transcriptomic responses to ocean acidification in larval sea urchins from a naturally variable pH environment.
    Evans TG, Chan F, Menge BA, Hofmann GE.
    Mol Ecol; 2013 Mar 23; 22(6):1609-25. PubMed ID: 23317456
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Transcriptomic response of sea urchin larvae Strongylocentrotus purpuratus to CO2-driven seawater acidification.
    Todgham AE, Hofmann GE.
    J Exp Biol; 2009 Aug 23; 212(Pt 16):2579-94. PubMed ID: 19648403
    [Abstract] [Full Text] [Related]

  • 9. Unique Genomic and Phenotypic Responses to Extreme and Variable pH Conditions in Purple Urchin Larvae.
    Garrett AD, Brennan RS, Steinhart AL, Pelletier AM, Pespeni MH.
    Integr Comp Biol; 2020 Aug 01; 60(2):318-331. PubMed ID: 32544238
    [Abstract] [Full Text] [Related]

  • 10. Temperature and CO(2) additively regulate physiology, morphology and genomic responses of larval sea urchins, Strongylocentrotus purpuratus.
    Padilla-Gamiño JL, Kelly MW, Evans TG, Hofmann GE.
    Proc Biol Sci; 2013 May 22; 280(1759):20130155. PubMed ID: 23536595
    [Abstract] [Full Text] [Related]

  • 11. Early developmental gene regulation in Strongylocentrotus purpuratus embryos in response to elevated CO₂ seawater conditions.
    Hammond LM, Hofmann GE.
    J Exp Biol; 2012 Jul 15; 215(Pt 14):2445-54. PubMed ID: 22723484
    [Abstract] [Full Text] [Related]

  • 12. Geographical gradients in selection can reveal genetic constraints for evolutionary responses to ocean acidification.
    Gaitán-Espitia JD, Marshall D, Dupont S, Bacigalupe LD, Bodrossy L, Hobday AJ.
    Biol Lett; 2017 Feb 15; 13(2):. PubMed ID: 28148831
    [Abstract] [Full Text] [Related]

  • 13. Tipping points of gastric pH regulation and energetics in the sea urchin larva exposed to CO2 -induced seawater acidification.
    Lee HG, Stumpp M, Yan JJ, Tseng YC, Heinzel S, Hu MY.
    Comp Biochem Physiol A Mol Integr Physiol; 2019 Aug 15; 234():87-97. PubMed ID: 31022521
    [Abstract] [Full Text] [Related]

  • 14. Quantifying rates of evolutionary adaptation in response to ocean acidification.
    Sunday JM, Crim RN, Harley CD, Hart MW.
    PLoS One; 2011 Aug 15; 6(8):e22881. PubMed ID: 21857962
    [Abstract] [Full Text] [Related]

  • 15. Biochemical adaptation to ocean acidification.
    Stillman JH, Paganini AW.
    J Exp Biol; 2015 Jun 15; 218(Pt 12):1946-55. PubMed ID: 26085671
    [Abstract] [Full Text] [Related]

  • 16. Rare genetic variation and balanced polymorphisms are important for survival in global change conditions.
    Brennan RS, Garrett AD, Huber KE, Hargarten H, Pespeni MH.
    Proc Biol Sci; 2019 Jun 12; 286(1904):20190943. PubMed ID: 31185858
    [Abstract] [Full Text] [Related]

  • 17. The stunting effect of a high CO2 ocean on calcification and development in sea urchin larvae, a synthesis from the tropics to the poles.
    Byrne M, Lamare M, Winter D, Dworjanyn SA, Uthicke S.
    Philos Trans R Soc Lond B Biol Sci; 2013 Jun 12; 368(1627):20120439. PubMed ID: 23980242
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Climate change and the oceans--what does the future hold?
    Bijma J, Pörtner HO, Yesson C, Rogers AD.
    Mar Pollut Bull; 2013 Sep 30; 74(2):495-505. PubMed ID: 23932473
    [Abstract] [Full Text] [Related]

  • 20. CO2 induced seawater acidification impacts sea urchin larval development II: gene expression patterns in pluteus larvae.
    Stumpp M, Dupont S, Thorndyke MC, Melzner F.
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Nov 30; 160(3):320-30. PubMed ID: 21742049
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 22.