These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


168 related items for PubMed ID: 23581580

  • 1. Differential molecular profiles of astrocytes in degeneration and re-innervation after sensory deafferentation of the adult rat cochlear nucleus.
    Fredrich M, Zeber AC, Hildebrandt H, Illing RB.
    Eur J Neurosci; 2013 Jul; 38(1):2041-56. PubMed ID: 23581580
    [Abstract] [Full Text] [Related]

  • 2. A role for microglial cells in reshaping neuronal circuitry of the adult rat auditory brainstem after its sensory deafferentation.
    Janz P, Illing RB.
    J Neurosci Res; 2014 Apr; 92(4):432-45. PubMed ID: 24446187
    [Abstract] [Full Text] [Related]

  • 3. Superior olivary contributions to auditory system plasticity: medial but not lateral olivocochlear neurons are the source of cochleotomy-induced GAP-43 expression in the ventral cochlear nucleus.
    Kraus KS, Illing RB.
    J Comp Neurol; 2004 Jul 26; 475(3):374-90. PubMed ID: 15221952
    [Abstract] [Full Text] [Related]

  • 4. Deafferentation-induced redistribution of MMP-2, but not of MMP-9, depends on the emergence of GAP-43 positive axons in the adult rat cochlear nucleus.
    Fredrich M, Illing RB.
    Neural Plast; 2011 Jul 26; 2011():859359. PubMed ID: 22135757
    [Abstract] [Full Text] [Related]

  • 5. MMP-2 is involved in synaptic remodeling after cochlear lesion.
    Fredrich M, Illing RB.
    Neuroreport; 2010 Mar 31; 21(5):324-7. PubMed ID: 20173666
    [Abstract] [Full Text] [Related]

  • 6. Sensory deafferentation modulates and redistributes neurocan in the rat auditory brainstem.
    Heusinger J, Hildebrandt H, Illing RB.
    Brain Behav; 2019 Aug 31; 9(8):e01353. PubMed ID: 31271523
    [Abstract] [Full Text] [Related]

  • 7. Plasticity of the auditory brainstem: effects of cochlear ablation on GAP-43 immunoreactivity in the rat.
    Illing RB, Horväth M, Laszig R.
    J Comp Neurol; 1997 May 26; 382(1):116-38. PubMed ID: 9136815
    [Abstract] [Full Text] [Related]

  • 8. Olivocochlear neurons sending axon collaterals into the ventral cochlear nucleus of the rat.
    Horváth M, Kraus KS, Illing RB.
    J Comp Neurol; 2000 Jun 19; 422(1):95-105. PubMed ID: 10842220
    [Abstract] [Full Text] [Related]

  • 9. Synaptic reorganization in the adult rat's ventral cochlear nucleus following its total sensory deafferentation.
    Hildebrandt H, Hoffmann NA, Illing RB.
    PLoS One; 2011 Jun 19; 6(8):e23686. PubMed ID: 21887295
    [Abstract] [Full Text] [Related]

  • 10. Cell death or survival: molecular and connectional conditions for olivocochlear neurons after axotomy.
    Kraus KS, Illing RB.
    Neuroscience; 2005 Jun 19; 134(2):467-81. PubMed ID: 15964701
    [Abstract] [Full Text] [Related]

  • 11. A novel method for selectively labelling olivocochlear collaterals in the rat.
    Baashar A, Robertson D, Mulders WH.
    Hear Res; 2015 Jul 19; 325():35-41. PubMed ID: 25814172
    [Abstract] [Full Text] [Related]

  • 12. Effect of altered neuronal activity on cell size in the medial nucleus of the trapezoid body and ventral cochlear nucleus of the gerbil.
    Pasic TR, Moore DR, Rubel EW.
    J Comp Neurol; 1994 Oct 01; 348(1):111-20. PubMed ID: 7814680
    [Abstract] [Full Text] [Related]

  • 13. The differential response of astrocytes within the vestibular and cochlear nuclei following unilateral labyrinthectomy or vestibular afferent activity blockade by transtympanic tetrodotoxin injection in the rat.
    Campos-Torres A, Touret M, Vidal PP, Barnum S, de Waele C.
    Neuroscience; 2005 Oct 01; 130(4):853-65. PubMed ID: 15652984
    [Abstract] [Full Text] [Related]

  • 14. Cholinergic input from the ventral nucleus of the trapezoid body to cochlear root neurons in rats.
    Gómez-Nieto R, Rubio ME, López DE.
    J Comp Neurol; 2008 Jan 20; 506(3):452-68. PubMed ID: 18041785
    [Abstract] [Full Text] [Related]

  • 15. Reconnecting neuronal networks in the auditory brainstem following unilateral deafening.
    Illing RB, Kraus KS, Meidinger MA.
    Hear Res; 2005 Aug 20; 206(1-2):185-99. PubMed ID: 16081008
    [Abstract] [Full Text] [Related]

  • 16. Targets of olivocochlear collaterals in cochlear nucleus of rat and guinea pig.
    Baashar A, Robertson D, Yates NJ, Mulders WHAM.
    J Comp Neurol; 2019 Oct 01; 527(14):2273-2290. PubMed ID: 30861121
    [Abstract] [Full Text] [Related]

  • 17. Acoustic trauma induces reemergence of the growth- and plasticity-associated protein GAP-43 in the rat auditory brainstem.
    Michler SA, Illing RB.
    J Comp Neurol; 2002 Sep 23; 451(3):250-66. PubMed ID: 12210137
    [Abstract] [Full Text] [Related]

  • 18. Effects of cochlear ablation on choline acetyltransferase activity in the rat cochlear nucleus and superior olive.
    Jin YM, Godfrey DA, Sun Y.
    J Neurosci Res; 2005 Jul 01; 81(1):91-101. PubMed ID: 15931674
    [Abstract] [Full Text] [Related]

  • 19. Upregulation of insulin-like growth factor and interleukin 1β occurs in neurons but not in glial cells in the cochlear nucleus following cochlear ablation.
    Fuentes-Santamaría V, Alvarado JC, Gabaldón-Ull MC, Manuel Juiz J.
    J Comp Neurol; 2013 Oct 15; 521(15):3478-99. PubMed ID: 23681983
    [Abstract] [Full Text] [Related]

  • 20. Relationship between noise-induced hearing-loss, persistent tinnitus and growth-associated protein-43 expression in the rat cochlear nucleus: does synaptic plasticity in ventral cochlear nucleus suppress tinnitus?
    Kraus KS, Ding D, Jiang H, Lobarinas E, Sun W, Salvi RJ.
    Neuroscience; 2011 Oct 27; 194():309-25. PubMed ID: 21821100
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.