These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


207 related items for PubMed ID: 23585334

  • 1. Synthesis and physicochemical, in vitro and in vivo evaluation of an anisotropic, nanocrystalline hydroxyapatite bisque scaffold with parallel-aligned pores mimicking the microstructure of cortical bone.
    Despang F, Bernhardt A, Lode A, Dittrich R, Hanke T, Shenoy SJ, Mani S, John A, Gelinsky M.
    J Tissue Eng Regen Med; 2015 Dec; 9(12):E152-66. PubMed ID: 23585334
    [Abstract] [Full Text] [Related]

  • 2. Bone regeneration and infiltration of an anisotropic composite scaffold: an experimental study of rabbit cranial defect repair.
    Li J, You F, Li Y, Zuo Y, Li L, Jiang J, Qu Y, Lu M, Man Y, Zou Q.
    J Biomater Sci Polym Ed; 2016 Dec; 27(4):327-38. PubMed ID: 26775692
    [Abstract] [Full Text] [Related]

  • 3. Nanocrystalline spherical hydroxyapatite granules for bone repair: in vitro evaluation with osteoblast-like cells and osteoclasts.
    Bernhardt A, Dittrich R, Lode A, Despang F, Gelinsky M.
    J Mater Sci Mater Med; 2013 Jul; 24(7):1755-66. PubMed ID: 23625348
    [Abstract] [Full Text] [Related]

  • 4. Effect of different hydroxyapatite incorporation methods on the structural and biological properties of porous collagen scaffolds for bone repair.
    Ryan AJ, Gleeson JP, Matsiko A, Thompson EM, O'Brien FJ.
    J Anat; 2015 Dec; 227(6):732-45. PubMed ID: 25409684
    [Abstract] [Full Text] [Related]

  • 5. Bone formation on the apatite-coated zirconia porous scaffolds within a rabbit calvarial defect.
    Kim HW, Shin SY, Kim HE, Lee YM, Chung CP, Lee HH, Rhyu IC.
    J Biomater Appl; 2008 May; 22(6):485-504. PubMed ID: 17494967
    [Abstract] [Full Text] [Related]

  • 6. Magnetic hydroxyapatite bone substitutes to enhance tissue regeneration: evaluation in vitro using osteoblast-like cells and in vivo in a bone defect.
    Panseri S, Cunha C, D'Alessandro T, Sandri M, Russo A, Giavaresi G, Marcacci M, Hung CT, Tampieri A.
    PLoS One; 2012 May; 7(6):e38710. PubMed ID: 22685602
    [Abstract] [Full Text] [Related]

  • 7. Surface-enrichment with hydroxyapatite nanoparticles in stereolithography-fabricated composite polymer scaffolds promotes bone repair.
    Guillaume O, Geven MA, Sprecher CM, Stadelmann VA, Grijpma DW, Tang TT, Qin L, Lai Y, Alini M, de Bruijn JD, Yuan H, Richards RG, Eglin D.
    Acta Biomater; 2017 May; 54():386-398. PubMed ID: 28286037
    [Abstract] [Full Text] [Related]

  • 8. Research of arginylglycylaspartic to promote osteogenesis of bone marrow mesenchymal cells on chitosan/hydroxyapatite scaffolds.
    Qu ZW, Meng QG, Xiao X, Li BL, Zhang FM.
    Biomed Mater Eng; 2014 May; 24(1):683-93. PubMed ID: 24211953
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. A novel composite scaffold of Cu-doped nano calcium-deficient hydroxyapatite/multi-(amino acid) copolymer for bone tissue regeneration.
    Mou P, Peng H, Zhou L, Li L, Li H, Huang Q.
    Int J Nanomedicine; 2019 May; 14():3331-3343. PubMed ID: 31123401
    [Abstract] [Full Text] [Related]

  • 11. Rapid-prototyped PLGA/β-TCP/hydroxyapatite nanocomposite scaffolds in a rabbit femoral defect model.
    Kim J, McBride S, Tellis B, Alvarez-Urena P, Song YH, Dean DD, Sylvia VL, Elgendy H, Ong J, Hollinger JO.
    Biofabrication; 2012 Jun; 4(2):025003. PubMed ID: 22427485
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Cell-free scaffolds with different stiffness but same microstructure promote bone regeneration in rabbit large bone defect model.
    Chen G, Yang L, Lv Y.
    J Biomed Mater Res A; 2016 Apr; 104(4):833-41. PubMed ID: 26650620
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Scaffold preferences of mesenchymal stromal cells and adipose-derived stem cells from green fluorescent protein transgenic mice influence the tissue engineering of bone.
    Wittenburg G, Flade V, Garbe AI, Lauer G, Labudde D.
    Br J Oral Maxillofac Surg; 2014 May; 52(5):409-14. PubMed ID: 24685477
    [Abstract] [Full Text] [Related]

  • 16. Tissue regeneration and repair of goat segmental femur defect with bioactive triphasic ceramic-coated hydroxyapatite scaffold.
    Nair MB, Varma HK, Menon KV, Shenoy SJ, John A.
    J Biomed Mater Res A; 2009 Dec; 91(3):855-65. PubMed ID: 19065569
    [Abstract] [Full Text] [Related]

  • 17. Acceleration of segmental bone regeneration in a rabbit model by strontium-doped calcium polyphosphate scaffold through stimulating VEGF and bFGF secretion from osteoblasts.
    Gu Z, Zhang X, Li L, Wang Q, Yu X, Feng T.
    Mater Sci Eng C Mater Biol Appl; 2013 Jan 01; 33(1):274-81. PubMed ID: 25428072
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis.
    Zhang Y, Xia L, Zhai D, Shi M, Luo Y, Feng C, Fang B, Yin J, Chang J, Wu C.
    Nanoscale; 2015 Dec 07; 7(45):19207-21. PubMed ID: 26525451
    [Abstract] [Full Text] [Related]

  • 20. Doped tricalcium phosphate scaffolds by thermal decomposition of naphthalene: Mechanical properties and in vivo osteogenesis in a rabbit femur model.
    Ke D, Dernell W, Bandyopadhyay A, Bose S.
    J Biomed Mater Res B Appl Biomater; 2015 Nov 07; 103(8):1549-59. PubMed ID: 25504889
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.