These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
199 related items for PubMed ID: 23597256
1. Suppression of plant defense responses by extracellular metabolites from Pseudomonas syringae pv. tabaci in Nicotiana benthamiana. Lee S, Yang DS, Uppalapati SR, Sumner LW, Mysore KS. BMC Plant Biol; 2013 Apr 18; 13():65. PubMed ID: 23597256 [Abstract] [Full Text] [Related]
2. Jasmonate ZIM-domain (JAZ) protein regulates host and nonhost pathogen-induced cell death in tomato and Nicotiana benthamiana. Ishiga Y, Ishiga T, Uppalapati SR, Mysore KS. PLoS One; 2013 Apr 18; 8(9):e75728. PubMed ID: 24086622 [Abstract] [Full Text] [Related]
3. Pseudomonas Type III effector AvrPto suppresses the programmed cell death induced by two nonhost pathogens in Nicotiana benthamiana and tomato. Kang L, Tang X, Mysore KS. Mol Plant Microbe Interact; 2004 Dec 18; 17(12):1328-36. PubMed ID: 15597738 [Abstract] [Full Text] [Related]
4. Coronatine inhibits stomatal closure and delays hypersensitive response cell death induced by nonhost bacterial pathogens. Lee S, Ishiga Y, Clermont K, Mysore KS. PeerJ; 2013 Dec 18; 1():e34. PubMed ID: 23638370 [Abstract] [Full Text] [Related]
5. WRKY22 and WRKY25 transcription factors are positive regulators of defense responses in Nicotiana benthamiana. Ramos RN, Martin GB, Pombo MA, Rosli HG. Plant Mol Biol; 2021 Jan 18; 105(1-2):65-82. PubMed ID: 32909182 [Abstract] [Full Text] [Related]
6. NTRC and chloroplast-generated reactive oxygen species regulate Pseudomonas syringae pv. tomato disease development in tomato and Arabidopsis. Ishiga Y, Ishiga T, Wangdi T, Mysore KS, Uppalapati SR. Mol Plant Microbe Interact; 2012 Mar 18; 25(3):294-306. PubMed ID: 22112219 [Abstract] [Full Text] [Related]
8. Ribosomal protein QM/RPL10 positively regulates defence and protein translation mechanisms during nonhost disease resistance. Ramu VS, Dawane A, Lee S, Oh S, Lee HK, Sun L, Senthil-Kumar M, Mysore KS. Mol Plant Pathol; 2020 Nov 18; 21(11):1481-1494. PubMed ID: 32964634 [Abstract] [Full Text] [Related]
9. A virus-induced gene silencing screen identifies a role for Thylakoid Formation1 in Pseudomonas syringae pv tomato symptom development in tomato and Arabidopsis. Wangdi T, Uppalapati SR, Nagaraj S, Ryu CM, Bender CL, Mysore KS. Plant Physiol; 2010 Jan 18; 152(1):281-92. PubMed ID: 19915014 [Abstract] [Full Text] [Related]
10. Diverse AvrPtoB homologs from several Pseudomonas syringae pathovars elicit Pto-dependent resistance and have similar virulence activities. Lin NC, Abramovitch RB, Kim YJ, Martin GB. Appl Environ Microbiol; 2006 Jan 18; 72(1):702-12. PubMed ID: 16391110 [Abstract] [Full Text] [Related]
11. The F-box protein ACRE189/ACIF1 regulates cell death and defense responses activated during pathogen recognition in tobacco and tomato. van den Burg HA, Tsitsigiannis DI, Rowland O, Lo J, Rallapalli G, Maclean D, Takken FL, Jones JD. Plant Cell; 2008 Mar 18; 20(3):697-719. PubMed ID: 18375657 [Abstract] [Full Text] [Related]
12. Role of a xyloglucan-specific endo-beta-1,4-glucanase inhibitor in the interactions of Nicotiana benthamiana with Colletotrichum destructivum, C. orbiculare or Pseudomonas syringae pv. tabaci. Xie W, Hao L, Goodwin PH. Mol Plant Pathol; 2008 Mar 18; 9(2):191-202. PubMed ID: 18705851 [Abstract] [Full Text] [Related]
13. Basal resistance against bacteria in Nicotiana benthamiana leaves is accompanied by reduced vascular staining and suppressed by multiple Pseudomonas syringae type III secretion system effector proteins. Oh HS, Collmer A. Plant J; 2005 Oct 18; 44(2):348-59. PubMed ID: 16212612 [Abstract] [Full Text] [Related]
14. Insight into Types I and II nonhost resistance using expression patterns of defense-related genes in tobacco. Oh SK, Lee S, Chung E, Park JM, Yu SH, Ryu CM, Choi D. Planta; 2006 Apr 18; 223(5):1101-7. PubMed ID: 16482435 [Abstract] [Full Text] [Related]
15. Identification of genes required for nonhost resistance to Xanthomonas oryzae pv. oryzae reveals novel signaling components. Li W, Xu YP, Zhang ZX, Cao WY, Li F, Zhou X, Chen GY, Cai XZ. PLoS One; 2012 Apr 18; 7(8):e42796. PubMed ID: 22912739 [Abstract] [Full Text] [Related]
16. Two Chloroplast-Localized Proteins: AtNHR2A and AtNHR2B, Contribute to Callose Deposition During Nonhost Disease Resistance in Arabidopsis. Singh R, Lee S, Ortega L, Ramu VS, Senthil-Kumar M, Blancaflor EB, Rojas CM, Mysore KS. Mol Plant Microbe Interact; 2018 Dec 18; 31(12):1280-1290. PubMed ID: 29877165 [Abstract] [Full Text] [Related]
17. Phytosterols play a key role in plant innate immunity against bacterial pathogens by regulating nutrient efflux into the apoplast. Wang K, Senthil-Kumar M, Ryu CM, Kang L, Mysore KS. Plant Physiol; 2012 Apr 18; 158(4):1789-802. PubMed ID: 22298683 [Abstract] [Full Text] [Related]
19. HopPtoN is a Pseudomonas syringae Hrp (type III secretion system) cysteine protease effector that suppresses pathogen-induced necrosis associated with both compatible and incompatible plant interactions. López-Solanilla E, Bronstein PA, Schneider AR, Collmer A. Mol Microbiol; 2004 Oct 18; 54(2):353-65. PubMed ID: 15469508 [Abstract] [Full Text] [Related]
20. Rpa1 mediates an immune response to avrRpm1Psa and confers resistance against Pseudomonas syringae pv. actinidiae. Yoon M, Rikkerink EHA. Plant J; 2020 May 18; 102(4):688-702. PubMed ID: 31849122 [Abstract] [Full Text] [Related] Page: [Next] [New Search]