These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


394 related items for PubMed ID: 23621853

  • 21. Conserving purple prairie clover (Dalea purpurea Vent.) as hay and silage had little effect on the efficacy of condensed tannins in modulating ruminal fermentation in vitro.
    Peng K, Xu Z, Nair J, Jin L, McAllister TA, Acharya S, Wang Y.
    J Sci Food Agric; 2021 Feb; 101(3):1247-1254. PubMed ID: 33135157
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Ruminal fermentation and degradation patterns, protozoa population, and urinary purine derivatives excretion in goats and wethers fed diets based on two-stage olive cake: effect of PEG supply.
    Yáñez Ruiz DR, Moumen A, Martín García AI, Molina Alcaide E.
    J Anim Sci; 2004 Jul; 82(7):2023-32. PubMed ID: 15309949
    [Abstract] [Full Text] [Related]

  • 27. Laminaria digitata phlorotannins decrease protein degradation and methanogenesis during in vitro ruminal fermentation.
    Vissers AM, Pellikaan WF, Bouwhuis A, Vincken JP, Gruppen H, Hendriks WH.
    J Sci Food Agric; 2018 Aug; 98(10):3644-3650. PubMed ID: 29250785
    [Abstract] [Full Text] [Related]

  • 28. Nutritive evaluation of spent green and black tea leaf silages by in vitro gas production characteristics, ruminal degradability and post-ruminal digestibility assessed with inhibitory activity of their tannins.
    Kondo M, Hirano Y, Kita K, Jayanegara A, Yokota HO.
    Anim Sci J; 2018 Dec; 89(12):1656-1662. PubMed ID: 30318832
    [Abstract] [Full Text] [Related]

  • 29. Products derived from olive leaves and fruits can alter in vitro ruminal fermentation and methane production.
    Shakeri P, Durmic Z, Vadhanabhuti J, Vercoe PE.
    J Sci Food Agric; 2017 Mar; 97(4):1367-1372. PubMed ID: 27376199
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Effects of protozoa on methane production in rumen and hindgut of calves around time of weaning.
    Schönhusen U, Zitnan R, Kuhla S, Jentsch W, Derno M, Voigt J.
    Arch Tierernahr; 2003 Aug; 57(4):279-95. PubMed ID: 14533867
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Effects of coconut and fish oils on ruminal methanogenesis, fermentation, and abundance and diversity of microbial populations in vitro.
    Patra AK, Yu Z.
    J Dairy Sci; 2013 Mar; 96(3):1782-92. PubMed ID: 23332846
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Modulation of in vitro rumen biohydrogenation by Cistus ladanifer tannins compared with other tannin sources.
    Costa M, Alves SP, Cabo Â, Guerreiro O, Stilwell G, Dentinho MT, Bessa RJ.
    J Sci Food Agric; 2017 Jan; 97(2):629-635. PubMed ID: 27130817
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 20.