These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
188 related items for PubMed ID: 23623264
1. Aversive stimuli and loss in the mesocorticolimbic dopamine system. Brooks AM, Berns GS. Trends Cogn Sci; 2013 Jun; 17(6):281-6. PubMed ID: 23623264 [Abstract] [Full Text] [Related]
2. Computing reward-prediction error: an integrated account of cortical timing and basal-ganglia pathways for appetitive and aversive learning. Morita K, Kawaguchi Y. Eur J Neurosci; 2015 Aug; 42(4):2003-21. PubMed ID: 26095906 [Abstract] [Full Text] [Related]
3. Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli. Mirenowicz J, Schultz W. Nature; 1996 Feb 01; 379(6564):449-51. PubMed ID: 8559249 [Abstract] [Full Text] [Related]
4. Disturbance of approach-avoidance behaviors in non-human primates by stimulation of the limbic territories of basal ganglia and anterior insula. Saga Y, Ruff CC, Tremblay L. Eur J Neurosci; 2019 Mar 01; 49(5):687-700. PubMed ID: 30307650 [Abstract] [Full Text] [Related]
5. Dopaminergic modulation of appetitive and aversive predictive learning. Iordanova MD. Rev Neurosci; 2009 Mar 01; 20(5-6):383-404. PubMed ID: 20397621 [Abstract] [Full Text] [Related]
6. Dopamine signals related to appetitive and aversive events in paradigms that manipulate reward and avoidability. Gentry RN, Schuweiler DR, Roesch MR. Brain Res; 2019 Jun 15; 1713():80-90. PubMed ID: 30300635 [Abstract] [Full Text] [Related]
8. Reactivity of limbic neurons of the monkey to appetitive and aversive signals. Fuster JM, Uyeda AA. Electroencephalogr Clin Neurophysiol; 1971 Apr 15; 30(4):281-93. PubMed ID: 4103500 [No Abstract] [Full Text] [Related]
9. A cognitive neuroscience approach to individual differences in sensitivity to reward. Avila C, Parcet MA, Barrós-Loscertales A. Neurotox Res; 2008 Oct 15; 14(2-3):191-203. PubMed ID: 19073426 [Abstract] [Full Text] [Related]
10. The vertebrate mesolimbic reward system and social behavior network: a comparative synthesis. O'Connell LA, Hofmann HA. J Comp Neurol; 2011 Dec 15; 519(18):3599-639. PubMed ID: 21800319 [Abstract] [Full Text] [Related]
13. Roles of OA1 octopamine receptor and Dop1 dopamine receptor in mediating appetitive and aversive reinforcement revealed by RNAi studies. Awata H, Wakuda R, Ishimaru Y, Matsuoka Y, Terao K, Katata S, Matsumoto Y, Hamanaka Y, Noji S, Mito T, Mizunami M. Sci Rep; 2016 Jul 14; 6():29696. PubMed ID: 27412401 [Abstract] [Full Text] [Related]
14. Roles of dopamine neurons in mediating the prediction error in aversive learning in insects. Terao K, Mizunami M. Sci Rep; 2017 Oct 31; 7(1):14694. PubMed ID: 29089641 [Abstract] [Full Text] [Related]
16. Neurons in the macaque orbitofrontal cortex code relative preference of both rewarding and aversive outcomes. Hosokawa T, Kato K, Inoue M, Mikami A. Neurosci Res; 2007 Mar 31; 57(3):434-45. PubMed ID: 17239463 [Abstract] [Full Text] [Related]
19. Distinct roles of synaptic transmission in direct and indirect striatal pathways to reward and aversive behavior. Hikida T, Kimura K, Wada N, Funabiki K, Nakanishi S. Neuron; 2010 Jun 24; 66(6):896-907. PubMed ID: 20620875 [Abstract] [Full Text] [Related]
20. [Structural characteristics of the brain of rats with differing capacities for the acquisition of an active avoidance conditioned reflex]. Dmitriev IuS, Dmitrieva NI, Lopatina NG, Gozzo S. Zh Vyssh Nerv Deiat Im I P Pavlova; 1988 Jun 24; 38(3):565-8. PubMed ID: 3188655 [No Abstract] [Full Text] [Related] Page: [Next] [New Search]