These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
260 related items for PubMed ID: 23638137
1. Different auditory feedback control for echolocation and communication in horseshoe bats. Liu Y, Feng J, Metzner W. PLoS One; 2013; 8(4):e62710. PubMed ID: 23638137 [Abstract] [Full Text] [Related]
2. Doppler-shift compensation behavior in horseshoe bats revisited: auditory feedback controls both a decrease and an increase in call frequency. Metzner W, Zhang S, Smotherman M. J Exp Biol; 2002 Jun; 205(Pt 11):1607-16. PubMed ID: 12000805 [Abstract] [Full Text] [Related]
3. An audio-vocal interface in echolocating horseshoe bats. Metzner W. J Neurosci; 1993 May; 13(5):1899-915. PubMed ID: 8478683 [Abstract] [Full Text] [Related]
4. Fine control of call frequency by horseshoe bats. Smotherman M, Metzner W. J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Jun; 189(6):435-46. PubMed ID: 12761645 [Abstract] [Full Text] [Related]
5. Auditory-feedback control of temporal call patterns in echolocating horseshoe bats. Smotherman M, Metzner W. J Neurophysiol; 2005 Mar; 93(3):1295-303. PubMed ID: 15496485 [Abstract] [Full Text] [Related]
8. Reduction of emission level in approach signals of greater mouse-eared bats (Myotis myotis): No evidence for a closed loop control system for intensity compensation. Budenz T, Denzinger A, Schnitzler HU. PLoS One; 2018 Mar; 13(3):e0194600. PubMed ID: 29543882 [Abstract] [Full Text] [Related]
9. 'Compromise' in Echolocation Calls between Different Colonies of the Intermediate Leaf-Nosed Bat (Hipposideros larvatus). Chen Y, Liu Q, Su Q, Sun Y, Peng X, He X, Zhang L. PLoS One; 2016 Mar; 11(3):e0151382. PubMed ID: 27029005 [Abstract] [Full Text] [Related]
10. Effects of echo intensity on Doppler-shift compensation behavior in horseshoe bats. Smotherman M, Metzner W. J Neurophysiol; 2003 Feb; 89(2):814-21. PubMed ID: 12574459 [Abstract] [Full Text] [Related]
11. Echolocating bats rely on audiovocal feedback to adapt sonar signal design. Luo J, Moss CF. Proc Natl Acad Sci U S A; 2017 Oct 10; 114(41):10978-10983. PubMed ID: 28973851 [Abstract] [Full Text] [Related]
12. On-board telemetry of emitted sounds from free-flying bats: compensation for velocity and distance stabilizes echo frequency and amplitude. Hiryu S, Shiori Y, Hosokawa T, Riquimaroux H, Watanabe Y. J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Sep 10; 194(9):841-51. PubMed ID: 18663454 [Abstract] [Full Text] [Related]
13. Scaling of echolocation call parameters in bats. Jones G. J Exp Biol; 1999 Dec 10; 202(Pt 23):3359-67. PubMed ID: 10562518 [Abstract] [Full Text] [Related]
14. Vocalization of echolocation-like pulses for interindividual interaction in horseshoe bats (Rhinolophus ferrumequinum). Kobayasi KI, Hiryu S, Shimozawa R, Riquimaroux H. J Acoust Soc Am; 2012 Nov 10; 132(5):EL417-22. PubMed ID: 23145704 [Abstract] [Full Text] [Related]
18. Echolocation calls of bats are influenced by maternal effects and change over a lifetime. Jones G, Ransome RD. Proc Biol Sci; 1993 May 22; 252(1334):125-8. PubMed ID: 8391702 [Abstract] [Full Text] [Related]
19. Doppler-shift compensation in the Taiwanese leaf-nosed bat (Hipposideros terasensis) recorded with a telemetry microphone system during flight. Hiryu S, Katsura K, Lin LK, Riquimaroux H, Watanabe Y. J Acoust Soc Am; 2005 Dec 22; 118(6):3927-33. PubMed ID: 16419835 [Abstract] [Full Text] [Related]