These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
360 related items for PubMed ID: 2364285
1. Post-critical period plasticity of callosal transfer to visual cortex cells of cats following early conditioning of monocular deprivation and late optic chiasm transection. Yinon U, Hammer A. Brain Res; 1990 May 14; 516(1):84-90. PubMed ID: 2364285 [Abstract] [Full Text] [Related]
2. Visual hemispheric dominance induced in split brain cats during development: a model of deficient interhemispheric transfer derived from physiological evidence in single visual cortex cells. Yinon U. Behav Brain Res; 1994 Oct 20; 64(1-2):97-110. PubMed ID: 7840897 [Abstract] [Full Text] [Related]
3. The ocular dominance and receptive field properties of visual cortex cells of cats following long-term transection of the optic chiasm and monocular deprivation during adulthood. Yinon U, Milgram A. Behav Brain Res; 1990 May 07; 38(2):163-73. PubMed ID: 2363836 [Abstract] [Full Text] [Related]
4. Split chiasm developmentally induced in kittens: plasticity of interhemispheric transfer in visual cortex cells. Yinon U, Chen M, Hammer A. Exp Brain Res; 1988 May 07; 72(1):201-3. PubMed ID: 3169188 [Abstract] [Full Text] [Related]
6. Visual split brain and monocular deprivation in kittens: differentiation between the effects of disuse and of binocular competition in visual cortex cells. Yinon U, Chen M. Behav Brain Res; 1988 Oct 07; 30(3):273-8. PubMed ID: 3178998 [Abstract] [Full Text] [Related]
8. Cortical cells' physiology following visual split brain in developing cats. Yinon U, Chen M, Milgram A, Gelerstein S. Brain Res Bull; 1991 Nov 07; 27(5):553-71. PubMed ID: 1756374 [Abstract] [Full Text] [Related]
10. Midsagittal transection of the optic chiasm and the corpus callosum induces visual split brain in cats: the effect on ocular dominance and responsiveness to cells in the visual cortex. Yinon U, Chen M, Hammer A. Exp Neurol; 1988 Jul 07; 101(1):107-13. PubMed ID: 3391253 [Abstract] [Full Text] [Related]
11. [Interhemispheric competition during postnatal development]. Cynader M, Leporé F, Guillemot JP, Feran M. Rev Can Biol; 1981 Mar 07; 40(1):47-51. PubMed ID: 7244316 [Abstract] [Full Text] [Related]
12. Importance of corpus callosum for visual receptive fields of single neurons in cat superior colliculus. Antonini A, Berlucchi G, Marzi CA, Sprague JM. J Neurophysiol; 1979 Jan 07; 42(1 Pt 1):137-52. PubMed ID: 430108 [Abstract] [Full Text] [Related]
15. Ocular dominance columns in V1 are more susceptible than associated callosal patches to imbalance of eye input during precritical and critical periods. Olavarria JF, Laing RJ, Andelin AK. J Comp Neurol; 2021 Aug 01; 529(11):2883-2910. PubMed ID: 33683706 [Abstract] [Full Text] [Related]
18. Role of visual experience in activating critical period in cat visual cortex. Mower GD, Christen WG. J Neurophysiol; 1985 Feb 01; 53(2):572-89. PubMed ID: 3981230 [Abstract] [Full Text] [Related]
19. Stereoperception in cats following section of the corpus callosum and/or the optic chiasma. Lepore F, Ptito M, Lassonde M. Exp Brain Res; 1986 Feb 01; 61(2):258-64. PubMed ID: 3948940 [Abstract] [Full Text] [Related]
20. The hemispheric dominance of cortical cells in the absence of direct visual pathways. Yinon U, Hammer A, Podell M. Brain Res; 1982 Jan 28; 232(1):187-90. PubMed ID: 7055697 [Abstract] [Full Text] [Related] Page: [Next] [New Search]