These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


250 related items for PubMed ID: 2364914

  • 1. Bending undulations and elasticity of the erythrocyte membrane: effects of cell shape and membrane organization.
    Zeman K, Engelhard H, Sackmann E.
    Eur Biophys J; 1990; 18(4):203-19. PubMed ID: 2364914
    [Abstract] [Full Text] [Related]

  • 2. Flicker spectroscopy of erythrocytes. A sensitive method to study subtle changes of membrane bending stiffness.
    Fricke K, Wirthensohn K, Laxhuber R, Sackmann E.
    Eur Biophys J; 1986; 14(2):67-81. PubMed ID: 3816703
    [Abstract] [Full Text] [Related]

  • 3. On the measurement of shear elastic moduli and viscosities of erythrocyte plasma membranes by transient deformation in high frequency electric fields.
    Engelhardt H, Sackmann E.
    Biophys J; 1988 Sep; 54(3):495-508. PubMed ID: 3207837
    [Abstract] [Full Text] [Related]

  • 4. Measurement of erythrocyte membrane elasticity by flicker eigenmode decomposition.
    Strey H, Peterson M, Sackmann E.
    Biophys J; 1995 Aug; 69(2):478-88. PubMed ID: 8527662
    [Abstract] [Full Text] [Related]

  • 5. Deformation behaviour of stomatocyte, discocyte and echinocyte red blood cell morphologies during optical tweezers stretching.
    Geekiyanage NM, Sauret E, Saha SC, Flower RL, Gu YT.
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1827-1843. PubMed ID: 32100179
    [Abstract] [Full Text] [Related]

  • 6. Variation of frequency spectrum of the erythrocyte flickering caused by aging, osmolarity, temperature and pathological changes.
    Fricke K, Sackmann E.
    Biochim Biophys Acta; 1984 Mar 23; 803(3):145-52. PubMed ID: 6704427
    [Abstract] [Full Text] [Related]

  • 7. Elastic properties of the red blood cell membrane that determine echinocyte deformability.
    Kuzman D, Svetina S, Waugh RE, Zeks B.
    Eur Biophys J; 2004 Feb 23; 33(1):1-15. PubMed ID: 13680208
    [Abstract] [Full Text] [Related]

  • 8. Elastic energy of the discocyte-stomatocyte transformation.
    Muñoz S, Sebastián JL, Sancho M, Alvarez G.
    Biochim Biophys Acta; 2014 Mar 23; 1838(3):950-6. PubMed ID: 24192054
    [Abstract] [Full Text] [Related]

  • 9. Deformational strain energy and erythrocyte shape.
    McMillan DE, Mitchell TP, Utterback NG.
    J Biomech; 1986 Mar 23; 19(4):275-86. PubMed ID: 3711126
    [Abstract] [Full Text] [Related]

  • 10. The cooperative role of membrane skeleton and bilayer in the mechanical behaviour of red blood cells.
    Svetina S, Kuzman D, Waugh RE, Ziherl P, Zeks B.
    Bioelectrochemistry; 2004 May 23; 62(2):107-13. PubMed ID: 15039011
    [Abstract] [Full Text] [Related]

  • 11. A coarse-grained red blood cell membrane model to study stomatocyte-discocyte-echinocyte morphologies.
    Geekiyanage NM, Balanant MA, Sauret E, Saha S, Flower R, Lim CT, Gu Y.
    PLoS One; 2019 May 23; 14(4):e0215447. PubMed ID: 31002688
    [Abstract] [Full Text] [Related]

  • 12. Stomatocyte-discocyte-echinocyte sequence of the human red blood cell: evidence for the bilayer- couple hypothesis from membrane mechanics.
    Lim H W G, Wortis M, Mukhopadhyay R.
    Proc Natl Acad Sci U S A; 2002 Dec 24; 99(26):16766-9. PubMed ID: 12471152
    [Abstract] [Full Text] [Related]

  • 13. Structure and deformation properties of red blood cells: concepts and quantitative methods.
    Evans EA.
    Methods Enzymol; 1989 Dec 24; 173():3-35. PubMed ID: 2674613
    [Abstract] [Full Text] [Related]

  • 14. Optical measurement of cell membrane tension.
    Popescu G, Ikeda T, Goda K, Best-Popescu CA, Laposata M, Manley S, Dasari RR, Badizadegan K, Feld MS.
    Phys Rev Lett; 2006 Nov 24; 97(21):218101. PubMed ID: 17155774
    [Abstract] [Full Text] [Related]

  • 15. Measurement of red blood cell mechanics during morphological changes.
    Park Y, Best CA, Badizadegan K, Dasari RR, Feld MS, Kuriabova T, Henle ML, Levine AJ, Popescu G.
    Proc Natl Acad Sci U S A; 2010 Apr 13; 107(15):6731-6. PubMed ID: 20351261
    [Abstract] [Full Text] [Related]

  • 16. Axisymmetric optical-trap measurement of red blood cell membrane elasticity.
    Lewalle A, Parker KH.
    J Biomech Eng; 2011 Jan 13; 133(1):011007. PubMed ID: 21186897
    [Abstract] [Full Text] [Related]

  • 17. A study of the dynamic properties of the human red blood cell membrane using quasi-elastic light-scattering spectroscopy.
    Tishler RB, Carlson FD.
    Biophys J; 1993 Dec 13; 65(6):2586-600. PubMed ID: 8312494
    [Abstract] [Full Text] [Related]

  • 18. Cytoskeleton influence on normal and tangent fluctuation modes in the red blood cells.
    Rochal SB, Lorman VL.
    Phys Rev Lett; 2006 Jun 23; 96(24):248102. PubMed ID: 16907283
    [Abstract] [Full Text] [Related]

  • 19. Biochemical factors influencing erythrocyte deformability and capillary entrance phenomena.
    La Celle PL, Smith BD.
    Scand J Clin Lab Invest Suppl; 1981 Jun 23; 156():145-9. PubMed ID: 6948376
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.