These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


746 related items for PubMed ID: 23649847

  • 1. Effects of ocean warming and acidification on survival, growth and skeletal development in the early benthic juvenile sea urchin (Heliocidaris erythrogramma).
    Wolfe K, Dworjanyn SA, Byrne M.
    Glob Chang Biol; 2013 Sep; 19(9):2698-707. PubMed ID: 23649847
    [Abstract] [Full Text] [Related]

  • 2. Vulnerability of the calcifying larval stage of the Antarctic sea urchin Sterechinus neumayeri to near-future ocean acidification and warming.
    Byrne M, Ho MA, Koleits L, Price C, King CK, Virtue P, Tilbrook B, Lamare M.
    Glob Chang Biol; 2013 Jul; 19(7):2264-75. PubMed ID: 23504957
    [Abstract] [Full Text] [Related]

  • 3. Early development of congeneric sea urchins (Heliocidaris) with contrasting life history modes in a warming and high CO2 ocean.
    Hardy NA, Byrne M.
    Mar Environ Res; 2014 Dec; 102():78-87. PubMed ID: 25115741
    [Abstract] [Full Text] [Related]

  • 4. Impacts of ocean acidification on sea urchin growth across the juvenile to mature adult life-stage transition is mitigated by warming.
    Dworjanyn SA, Byrne M.
    Proc Biol Sci; 2018 Apr 11; 285(1876):. PubMed ID: 29643209
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Sea urchins in a high-CO2 world: the influence of acclimation on the immune response to ocean warming and acidification.
    Brothers CJ, Harianto J, McClintock JB, Byrne M.
    Proc Biol Sci; 2016 Aug 31; 283(1837):. PubMed ID: 27559066
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Sea urchins in a high-CO2 world: partitioned effects of body size, ocean warming and acidification on metabolic rate.
    Carey N, Harianto J, Byrne M.
    J Exp Biol; 2016 Apr 15; 219(Pt 8):1178-86. PubMed ID: 26896541
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Effects of ocean warming and acidification on fertilization in the Antarctic echinoid Sterechinus neumayeri across a range of sperm concentrations.
    Ho MA, Price C, King CK, Virtue P, Byrne M.
    Mar Environ Res; 2013 Sep 15; 90():136-41. PubMed ID: 23948149
    [Abstract] [Full Text] [Related]

  • 12. Differential impacts of ocean acidification and warming on winter and summer progeny of a coastal squid (Loligo vulgaris).
    Rosa R, Trübenbach K, Pimentel MS, Boavida-Portugal J, Faleiro F, Baptista M, Dionísio G, Calado R, Pörtner HO, Repolho T.
    J Exp Biol; 2014 Feb 15; 217(Pt 4):518-25. PubMed ID: 24523499
    [Abstract] [Full Text] [Related]

  • 13. Building global change resilience: Concrete has the potential to ameliorate the negative effects of climate-driven ocean change on a newly-settled calcifying invertebrate.
    Mos B, Dworjanyn SA, Mamo LT, Kelaher BP.
    Sci Total Environ; 2019 Jan 01; 646():1349-1358. PubMed ID: 30235620
    [Abstract] [Full Text] [Related]

  • 14. Adaptive capacity of the habitat modifying sea urchin Centrostephanus rodgersii to ocean warming and ocean acidification: performance of early embryos.
    Foo SA, Dworjanyn SA, Poore AG, Byrne M.
    PLoS One; 2012 Jan 01; 7(8):e42497. PubMed ID: 22880005
    [Abstract] [Full Text] [Related]

  • 15. Robustness of larval development of intertidal sea urchin species to simulated ocean warming and acidification.
    García E, Hernández JC, Clemente S.
    Mar Environ Res; 2018 Aug 01; 139():35-45. PubMed ID: 29753493
    [Abstract] [Full Text] [Related]

  • 16. Multistressor impacts of warming and acidification of the ocean on marine invertebrates' life histories.
    Byrne M, Przeslawski R.
    Integr Comp Biol; 2013 Oct 01; 53(4):582-96. PubMed ID: 23697893
    [Abstract] [Full Text] [Related]

  • 17. Warming influences Mg2+ content, while warming and acidification influence calcification and test strength of a sea urchin.
    Byrne M, Smith AM, West S, Collard M, Dubois P, Graba-landry A, Dworjanyn SA.
    Environ Sci Technol; 2014 Nov 04; 48(21):12620-7. PubMed ID: 25252045
    [Abstract] [Full Text] [Related]

  • 18. Larvae of the coral eating crown-of-thorns starfish, Acanthaster planci in a warmer-high CO2 ocean.
    Kamya PZ, Dworjanyn SA, Hardy N, Mos B, Uthicke S, Byrne M.
    Glob Chang Biol; 2014 Nov 04; 20(11):3365-76. PubMed ID: 24615941
    [Abstract] [Full Text] [Related]

  • 19. Could the acid-base status of Antarctic sea urchins indicate a better-than-expected resilience to near-future ocean acidification?
    Collard M, De Ridder C, David B, Dehairs F, Dubois P.
    Glob Chang Biol; 2015 Feb 04; 21(2):605-17. PubMed ID: 25270127
    [Abstract] [Full Text] [Related]

  • 20. Ocean warming ameliorates the negative effects of ocean acidification on Paracentrotus lividus larval development and settlement.
    García E, Clemente S, Hernández JC.
    Mar Environ Res; 2015 Sep 04; 110():61-8. PubMed ID: 26275754
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 38.