These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
263 related items for PubMed ID: 23651155
1. A modified Cre-lox genetic switch to dynamically control metabolic flow in Saccharomyces cerevisiae. Yamanishi M, Matsuyama T. ACS Synth Biol; 2012 May 18; 1(5):172-80. PubMed ID: 23651155 [Abstract] [Full Text] [Related]
2. Double mutation of the PDC1 and ADH1 genes improves lactate production in the yeast Saccharomyces cerevisiae expressing the bovine lactate dehydrogenase gene. Tokuhiro K, Ishida N, Nagamori E, Saitoh S, Onishi T, Kondo A, Takahashi H. Appl Microbiol Biotechnol; 2009 Apr 18; 82(5):883-90. PubMed ID: 19122995 [Abstract] [Full Text] [Related]
3. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background. Novy V, Brunner B, Müller G, Nidetzky B. Biotechnol Bioeng; 2017 Jan 18; 114(1):163-171. PubMed ID: 27426989 [Abstract] [Full Text] [Related]
4. [Modification of carbon flux in Sacchromyces cerevisiae to improve L-lactic acid production]. Zhao L, Wang J, Zhou J, Liu L, Du G, Chen J. Wei Sheng Wu Xue Bao; 2011 Jan 18; 51(1):50-8. PubMed ID: 21465789 [Abstract] [Full Text] [Related]
5. Metabolic engineering of Saccharomyces cerevisiae for efficient production of pure L-(+)-lactic acid. Ishida N, Saitoh S, Ohnishi T, Tokuhiro K, Nagamori E, Kitamoto K, Takahashi H. Appl Biochem Biotechnol; 2006 Jan 18; 129-132():795-807. PubMed ID: 16915689 [Abstract] [Full Text] [Related]
6. Metabolic engineering of Saccharomyces cerevisiae for efficient production of pure L-(+)-lactic acid. Ishida N, Saitoh S, Ohnishi T, Tokuhiro K, Nagamori E, Kitamoto K, Takahashi H. Appl Biochem Biotechnol; 2006 Mar 18; 131(1-3):795-807. PubMed ID: 18563655 [Abstract] [Full Text] [Related]
10. Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae. Kondo T, Tezuka H, Ishii J, Matsuda F, Ogino C, Kondo A. J Biotechnol; 2012 May 31; 159(1-2):32-7. PubMed ID: 22342368 [Abstract] [Full Text] [Related]
11. An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae. Oud B, Flores CL, Gancedo C, Zhang X, Trueheart J, Daran JM, Pronk JT, van Maris AJ. Microb Cell Fact; 2012 Sep 15; 11():131. PubMed ID: 22978798 [Abstract] [Full Text] [Related]
12. Production of L-lactic acid by the yeast Candida sonorensis expressing heterologous bacterial and fungal lactate dehydrogenases. Ilmén M, Koivuranta K, Ruohonen L, Rajgarhia V, Suominen P, Penttilä M. Microb Cell Fact; 2013 May 25; 12():53. PubMed ID: 23706009 [Abstract] [Full Text] [Related]
14. Lactic acid production by Saccharomyces cerevisiae expressing a Rhizopus oryzae lactate dehydrogenase gene. Skory CD. J Ind Microbiol Biotechnol; 2003 Jan 25; 30(1):22-7. PubMed ID: 12545382 [Abstract] [Full Text] [Related]
15. Improvement of ethanol yield from glycerol via conversion of pyruvate to ethanol in metabolically engineered Saccharomyces cerevisiae. Yu KO, Jung J, Ramzi AB, Kim SW, Park C, Han SO. Appl Biochem Biotechnol; 2012 Feb 25; 166(4):856-65. PubMed ID: 22161213 [Abstract] [Full Text] [Related]