These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


148 related items for PubMed ID: 23656094

  • 1. Experimental evaluation of inverse filtering using physical systems with known glottal flow and tract characteristics.
    Chu DT, Li K, Epps J, Smith J, Wolfe J.
    J Acoust Soc Am; 2013 May; 133(5):EL358-62. PubMed ID: 23656094
    [Abstract] [Full Text] [Related]

  • 2. Voice production model integrating boundary-layer analysis of glottal flow and source-filter coupling.
    Kaburagi T.
    J Acoust Soc Am; 2011 Mar; 129(3):1554-67. PubMed ID: 21428519
    [Abstract] [Full Text] [Related]

  • 3. Regulation of glottal closure and airflow in a three-dimensional phonation model: implications for vocal intensity control.
    Zhang Z.
    J Acoust Soc Am; 2015 Feb; 137(2):898-910. PubMed ID: 25698022
    [Abstract] [Full Text] [Related]

  • 4. Experimental investigation of the influence of a posterior gap on glottal flow and sound.
    Park JB, Mongeau L.
    J Acoust Soc Am; 2008 Aug; 124(2):1171-9. PubMed ID: 18681605
    [Abstract] [Full Text] [Related]

  • 5. Soul and Musical Theater: A Comparison of Two Vocal Styles.
    Hallqvist H, Lã FM, Sundberg J.
    J Voice; 2017 Mar; 31(2):229-235. PubMed ID: 27430860
    [Abstract] [Full Text] [Related]

  • 6. Estimation of the voice source from speech pressure signals: evaluation of an inverse filtering technique using physical modelling of voice production.
    Alku P, Story B, Airas M.
    Folia Phoniatr Logop; 2006 Mar; 58(2):102-13. PubMed ID: 16479132
    [Abstract] [Full Text] [Related]

  • 7. Theoretical simulation and experimental validation of inverse quasi-one-dimensional steady and unsteady glottal flow models.
    Cisonni J, Van Hirtum A, Pelorson X, Willems J.
    J Acoust Soc Am; 2008 Jul; 124(1):535-45. PubMed ID: 18646996
    [Abstract] [Full Text] [Related]

  • 8. On the acoustical relevance of supraglottal flow structures to low-frequency voice production.
    Zhang Z, Neubauer J.
    J Acoust Soc Am; 2010 Dec; 128(6):EL378-83. PubMed ID: 21218861
    [Abstract] [Full Text] [Related]

  • 9. Unsteady behavior of flow in a scaled-up vocal folds model.
    Krane M, Barry M, Wei T.
    J Acoust Soc Am; 2007 Dec; 122(6):3659-70. PubMed ID: 18247773
    [Abstract] [Full Text] [Related]

  • 10. Inverse filtering of nasalized vowels using synthesized speech.
    Gobl C, Mahshie J.
    J Voice; 2013 Mar; 27(2):155-69. PubMed ID: 23231805
    [Abstract] [Full Text] [Related]

  • 11. Estimating the spectral tilt of the glottal source from telephone speech using a deep neural network.
    Jokinen E, Alku P.
    J Acoust Soc Am; 2017 Apr; 141(4):EL327. PubMed ID: 28464691
    [Abstract] [Full Text] [Related]

  • 12. Vibratory Dynamics of Four Types of Excised Larynx Phonations.
    Li L, Zhang Y, Calawerts W, Jiang JJ.
    J Voice; 2016 Nov; 30(6):649-655. PubMed ID: 26476848
    [Abstract] [Full Text] [Related]

  • 13. Subglottal pressure oscillations accompanying phonation.
    Sundberg J, Scherer R, Hess M, Müller F, Granqvist S.
    J Voice; 2013 Jul; 27(4):411-21. PubMed ID: 23809566
    [Abstract] [Full Text] [Related]

  • 14. The effect of resonance tubes on glottal contact quotient with and without task instruction: a comparison of trained and untrained voices.
    Gaskill CS, Quinney DM.
    J Voice; 2012 May; 26(3):e79-93. PubMed ID: 21550779
    [Abstract] [Full Text] [Related]

  • 15. Glottal inverse filtering with the closed-phase covariance analysis utilizing mathematical constraints in modelling of the vocal tract.
    Alku P, Magi C, Bäckström T.
    Logoped Phoniatr Vocol; 2009 Dec; 34(4):200-9. PubMed ID: 19415566
    [Abstract] [Full Text] [Related]

  • 16. The influence of glottal cross-section shape on theoretical flow models.
    Wu B, Van Hirtum A, Pelorson X, Luo X.
    J Acoust Soc Am; 2013 Aug; 134(2):909-12. PubMed ID: 23927089
    [Abstract] [Full Text] [Related]

  • 17. Formant frequency estimation of high-pitched vowels using weighted linear prediction.
    Alku P, Pohjalainen J, Vainio M, Laukkanen AM, Story BH.
    J Acoust Soc Am; 2013 Aug; 134(2):1295-313. PubMed ID: 23927127
    [Abstract] [Full Text] [Related]

  • 18. Voice Source Variation Between Vowels in Male Opera Singers.
    Sundberg J, Lã FM, Gill BP.
    J Voice; 2016 Sep; 30(5):509-17. PubMed ID: 26350698
    [Abstract] [Full Text] [Related]

  • 19. Modeling measured glottal volume velocity waveforms.
    Verneuil A, Berry DA, Kreiman J, Gerratt BR, Ye M, Berke GS.
    Ann Otol Rhinol Laryngol; 2003 Feb; 112(2):120-31. PubMed ID: 12597284
    [Abstract] [Full Text] [Related]

  • 20. Effect of Supraglottal Acoustics on Fluid-Structure Interaction During Human Voice Production.
    Bodaghi D, Jiang W, Xue Q, Zheng X.
    J Biomech Eng; 2021 Apr 01; 143(4):. PubMed ID: 33399816
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.