These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
161 related items for PubMed ID: 23656273
1. Fabrication of CuInTe2 and CuInTe(2-x)Se(x) ternary gradient quantum dots and their application to solar cells. Kim S, Kang M, Kim S, Heo JH, Noh JH, Im SH, Seok SI, Kim SW. ACS Nano; 2013 Jun 25; 7(6):4756-63. PubMed ID: 23656273 [Abstract] [Full Text] [Related]
2. Near infrared absorption of CdSe(x)Te(1-x) alloyed quantum dot sensitized solar cells with more than 6% efficiency and high stability. Pan Z, Zhao K, Wang J, Zhang H, Feng Y, Zhong X. ACS Nano; 2013 Jun 25; 7(6):5215-22. PubMed ID: 23705771 [Abstract] [Full Text] [Related]
3. Improved performance of CuInS2 quantum dot-sensitized solar cells based on a multilayered architecture. Chang JY, Lin JM, Su LF, Chang CF. ACS Appl Mater Interfaces; 2013 Sep 11; 5(17):8740-52. PubMed ID: 23937511 [Abstract] [Full Text] [Related]
4. An energy-harvesting scheme employing CuGaSe2 quantum dot-modified ZnO buffer layers for drastic conversion efficiency enhancement in inorganic-organic hybrid solar cells. Ho CR, Tsai ML, Jhuo HJ, Lien DH, Lin CA, Tsai SH, Wei TC, Huang KP, Chen SA, He JH. Nanoscale; 2013 Jul 21; 5(14):6350-5. PubMed ID: 23455444 [Abstract] [Full Text] [Related]
5. Preparation and bioapplication of high-quality, water-soluble, biocompatible, and near-infrared-emitting CdSeTe alloyed quantum dots. Liang GX, Gu MM, Zhang JR, Zhu JJ. Nanotechnology; 2009 Oct 14; 20(41):415103. PubMed ID: 19762946 [Abstract] [Full Text] [Related]
6. Synthesis of near-infrared-emitting CdTeSe and CdZnTeSe quantum dots. Yang F, Yang P, Zhang L. Luminescence; 2013 Oct 14; 28(6):836-41. PubMed ID: 23060275 [Abstract] [Full Text] [Related]
7. A solid-state CdSe quantum dot sensitized solar cell based on a quaterthiophene as a hole transporting material. Barceló I, Campiña JM, Lana-Villarreal T, Gómez R. Phys Chem Chem Phys; 2012 Apr 28; 14(16):5801-7. PubMed ID: 22426179 [Abstract] [Full Text] [Related]
8. Colloidally stable selenium@copper selenide core@shell nanoparticles as selenium source for manufacturing of copper-indium-selenide solar cells. Dong H, Quintilla A, Cemernjak M, Popescu R, Gerthsen D, Ahlswede E, Feldmann C. J Colloid Interface Sci; 2014 Feb 01; 415():103-10. PubMed ID: 24267336 [Abstract] [Full Text] [Related]
9. Amorphous Cu-In-S nanoparticles as precursors for CuInSe2 thin-film solar cells with a high efficiency. Ahn S, Choi YJ, Kim K, Eo YJ, Cho A, Gwak J, Yun JH, Shin K, Ahn SK, Yoon K. ChemSusChem; 2013 Jul 01; 6(7):1282-7. PubMed ID: 23681958 [Abstract] [Full Text] [Related]
10. Panchromatic quantum-dot-sensitized solar cells based on a parallel tandem structure. Zhou N, Yang Y, Huang X, Wu H, Luo Y, Li D, Meng Q. ChemSusChem; 2013 Apr 01; 6(4):687-92. PubMed ID: 23495072 [Abstract] [Full Text] [Related]
11. IR laser induced spectra in novel crystals CdTe-CuInTe2. Parasyuk OV, Kadykalo EM, Marushko LP, Myronchuk G, Fedorchuk AO, Wojciechowski A, Piasecki M, Mzyk M, Kuznik W. Spectrochim Acta A Mol Biomol Spectrosc; 2013 Dec 01; 116():446-50. PubMed ID: 23973592 [Abstract] [Full Text] [Related]
12. Formation pathway of CuInSe2 nanocrystals for solar cells. Kar M, Agrawal R, Hillhouse HW. J Am Chem Soc; 2011 Nov 02; 133(43):17239-47. PubMed ID: 21879767 [Abstract] [Full Text] [Related]
13. Dynamic study of highly efficient CdS/CdSe quantum dot-sensitized solar cells fabricated by electrodeposition. Yu XY, Liao JY, Qiu KQ, Kuang DB, Su CY. ACS Nano; 2011 Dec 27; 5(12):9494-500. PubMed ID: 22032641 [Abstract] [Full Text] [Related]
14. Synthesis of Cysteine-Capped Zn(x)Cd(1)(-)(x)Se alloyed quantum dots emitting in the blue-green spectral range. Liu FC, Cheng TL, Shen CC, Tseng WL, Chiang MY. Langmuir; 2008 Mar 04; 24(5):2162-7. PubMed ID: 18205420 [Abstract] [Full Text] [Related]
15. ZnO/TiO2 nanocable structured photoelectrodes for CdS/CdSe quantum dot co-sensitized solar cells. Tian J, Zhang Q, Zhang L, Gao R, Shen L, Zhang S, Qu X, Cao G. Nanoscale; 2013 Feb 07; 5(3):936-43. PubMed ID: 23166058 [Abstract] [Full Text] [Related]
16. Series circuit of organic thin-film solar cells for conversion of water into hydrogen. Aoki A, Naruse M, Abe T. Chemphyschem; 2013 Jul 22; 14(10):2317-20. PubMed ID: 23671012 [Abstract] [Full Text] [Related]
17. Enhanced performance of p-type dye-sensitized solar cells based on ultrasmall Mg-doped CuCrO2 nanocrystals. Xiong D, Zhang W, Zeng X, Xu Z, Chen W, Cui J, Wang M, Sun L, Cheng YB. ChemSusChem; 2013 Aug 22; 6(8):1432-7. PubMed ID: 23794483 [Abstract] [Full Text] [Related]
18. High performance PbS quantum dot sensitized solar cells via electric field assisted in situ chemical deposition on modulated TiO2 nanotube arrays. Tao L, Xiong Y, Liu H, Shen W. Nanoscale; 2014 Jan 21; 6(2):931-8. PubMed ID: 24281658 [Abstract] [Full Text] [Related]
19. Tuning the synthesis of ternary lead chalcogenide quantum dots by balancing precursor reactivity. Smith DK, Luther JM, Semonin OE, Nozik AJ, Beard MC. ACS Nano; 2011 Jan 25; 5(1):183-90. PubMed ID: 21141910 [Abstract] [Full Text] [Related]
20. Microwave-assisted aqueous synthesis of new quaternary-alloyed CdSeTeS quantum dots; and their bioapplications in targeted imaging of cancer cells. Yang F, Xu Z, Wang J, Zan F, Dong C, Ren J. Luminescence; 2013 Jan 25; 28(3):392-400. PubMed ID: 22696455 [Abstract] [Full Text] [Related] Page: [Next] [New Search]