These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Three-dimensional ultrasound of carotid atherosclerosis: semiautomated segmentation using a level set-based method. Ukwatta E, Awad J, Ward AD, Buchanan D, Samarabandu J, Parraga G, Fenster A. Med Phys; 2011 May; 38(5):2479-93. PubMed ID: 21776783 [Abstract] [Full Text] [Related]
3. Three-dimensional segmentation of three-dimensional ultrasound carotid atherosclerosis using sparse field level sets. Ukwatta E, Yuan J, Buchanan D, Chiu B, Awad J, Qiu W, Parraga G, Fenster A. Med Phys; 2013 May; 40(5):052903. PubMed ID: 23635296 [Abstract] [Full Text] [Related]
4. Correspondence optimization in 2D standardized carotid wall thickness map by description length minimization: A tool for increasing reproducibility of 3D ultrasound-based measurements. Chen Y, Chiu B. Med Phys; 2016 Dec; 43(12):6474. PubMed ID: 27908160 [Abstract] [Full Text] [Related]
5. Carotid plaque segmentation from three-dimensional ultrasound images by direct three-dimensional sparse field level-set optimization. Cheng J, Chen Y, Yu Y, Chiu B. Comput Biol Med; 2018 Mar 01; 94():27-40. PubMed ID: 29407996 [Abstract] [Full Text] [Related]
6. Novel 3D ultrasound image-based biomarkers based on a feature selection from a 2D standardized vessel wall thickness map: a tool for sensitive assessment of therapies for carotid atherosclerosis. Chiu B, Li B, Chow TW. Phys Med Biol; 2013 Sep 07; 58(17):5959-82. PubMed ID: 23938458 [Abstract] [Full Text] [Related]
7. Three-dimensional carotid ultrasound segmentation variability dependence on signal difference and boundary orientation. Chiu B, Krasinski A, Spence JD, Parraga G, Fenster A. Ultrasound Med Biol; 2010 Jan 07; 36(1):95-110. PubMed ID: 19900751 [Abstract] [Full Text] [Related]
12. Sensitive three-dimensional ultrasound assessment of carotid atherosclerosis by weighted average of local vessel wall and plaque thickness change. Cheng J, Ukwatta E, Shavakh S, Chow TWS, Parraga G, Spence JD, Chiu B. Med Phys; 2017 Oct 07; 44(10):5280-5292. PubMed ID: 28782187 [Abstract] [Full Text] [Related]
15. Fast segmentation of the femoral arteries from 3D MR images: A tool for rapid assessment of peripheral arterial disease. Chen W, Xu J, Chiu B. Med Phys; 2015 May 07; 42(5):2431-48. PubMed ID: 25979037 [Abstract] [Full Text] [Related]
16. Fast-marching segmentation of three-dimensional intravascular ultrasound images: a pre- and post-intervention study. Cardinal MH, Soulez G, Tardif JC, Meunier J, Cloutier G. Med Phys; 2010 Jul 07; 37(7):3633-47. PubMed ID: 20831071 [Abstract] [Full Text] [Related]
18. Learning-based automated segmentation of the carotid artery vessel wall in dual-sequence MRI using subdivision surface fitting. Gao S, van 't Klooster R, Kitslaar PH, Coolen BF, van den Berg AM, Smits LP, Shahzad R, Shamonin DP, de Koning PJH, Nederveen AJ, van der Geest RJ. Med Phys; 2017 Oct 07; 44(10):5244-5259. PubMed ID: 28715090 [Abstract] [Full Text] [Related]