These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


297 related items for PubMed ID: 23657827

  • 1. Using leaf optical properties to detect ozone effects on foliar biochemistry.
    Ainsworth EA, Serbin SP, Skoneczka JA, Townsend PA.
    Photosynth Res; 2014 Feb; 119(1-2):65-76. PubMed ID: 23657827
    [Abstract] [Full Text] [Related]

  • 2. Spectral reflectance from a soybean canopy exposed to elevated CO2 and O3.
    Gray SB, Dermody O, DeLucia EH.
    J Exp Bot; 2010 Oct; 61(15):4413-22. PubMed ID: 20696654
    [Abstract] [Full Text] [Related]

  • 3. An in vivo analysis of the effect of season-long open-air elevation of ozone to anticipated 2050 levels on photosynthesis in soybean.
    Morgan PB, Bernacchi CJ, Ort DR, Long SP.
    Plant Physiol; 2004 Aug; 135(4):2348-57. PubMed ID: 15299126
    [Abstract] [Full Text] [Related]

  • 4. Changes in leaf area, nitrogen content and canopy photosynthesis in soybean exposed to an ozone concentration gradient.
    Oikawa S, Ainsworth EA.
    Environ Pollut; 2016 Aug; 215():347-355. PubMed ID: 27261884
    [Abstract] [Full Text] [Related]

  • 5. Ozone exposure response for U.S. soybean cultivars: linear reductions in photosynthetic potential, biomass, and yield.
    Betzelberger AM, Yendrek CR, Sun J, Leisner CP, Nelson RL, Ort DR, Ainsworth EA.
    Plant Physiol; 2012 Dec; 160(4):1827-39. PubMed ID: 23037504
    [Abstract] [Full Text] [Related]

  • 6. High-throughput characterization, correlation, and mapping of leaf photosynthetic and functional traits in the soybean (Glycine max) nested association mapping population.
    Montes CM, Fox C, Sanz-Sáez Á, Serbin SP, Kumagai E, Krause MD, Xavier A, Specht JE, Beavis WD, Bernacchi CJ, Diers BW, Ainsworth EA.
    Genetics; 2022 May 31; 221(2):. PubMed ID: 35451475
    [Abstract] [Full Text] [Related]

  • 7. High-throughput field phenotyping using hyperspectral reflectance and partial least squares regression (PLSR) reveals genetic modifications to photosynthetic capacity.
    Meacham-Hensold K, Montes CM, Wu J, Guan K, Fu P, Ainsworth EA, Pederson T, Moore CE, Brown KL, Raines C, Bernacchi CJ.
    Remote Sens Environ; 2019 Sep 15; 231():111176. PubMed ID: 31534277
    [Abstract] [Full Text] [Related]

  • 8. Effects of elevated O3 exposure on seed yield, N concentration and photosynthesis of nine soybean cultivars (Glycine max (L.) Merr.) in Northeast China.
    Zhang W, Wang G, Liu X, Feng Z.
    Plant Sci; 2014 Sep 15; 226():172-81. PubMed ID: 25113462
    [Abstract] [Full Text] [Related]

  • 9. Leaf optical properties reflect variation in photosynthetic metabolism and its sensitivity to temperature.
    Serbin SP, Dillaway DN, Kruger EL, Townsend PA.
    J Exp Bot; 2012 Jan 15; 63(1):489-502. PubMed ID: 21984647
    [Abstract] [Full Text] [Related]

  • 10. Predicting biochemical acclimation of leaf photosynthesis in soybean under in-field canopy warming using hyperspectral reflectance.
    Kumagai E, Burroughs CH, Pederson TL, Montes CM, Peng B, Kimm H, Guan K, Ainsworth EA, Bernacchi CJ.
    Plant Cell Environ; 2022 Jan 15; 45(1):80-94. PubMed ID: 34664281
    [Abstract] [Full Text] [Related]

  • 11. How does elevated CO2 or ozone affect the leaf-area index of soybean when applied independently?
    Dermody O, Long SP, DeLucia EH.
    New Phytol; 2006 Jan 15; 169(1):145-55. PubMed ID: 16390426
    [Abstract] [Full Text] [Related]

  • 12. Beyond greenness: Detecting temporal changes in photosynthetic capacity with hyperspectral reflectance data.
    Barnes ML, Breshears DD, Law DJ, van Leeuwen WJD, Monson RK, Fojtik AC, Barron-Gafford GA, Moore DJP.
    PLoS One; 2017 Jan 15; 12(12):e0189539. PubMed ID: 29281709
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Biochemical and physiological processes associated with the differential ozone response in ozone-tolerant and sensitive soybean genotypes.
    Chutteang C, Booker FL, Na-Ngern P, Burton A, Aoki M, Burkey KO.
    Plant Biol (Stuttg); 2016 Jan 15; 18 Suppl 1():28-36. PubMed ID: 25959717
    [Abstract] [Full Text] [Related]

  • 17. Chlorophyll Can Be Reduced in Crop Canopies with Little Penalty to Photosynthesis.
    Walker BJ, Drewry DT, Slattery RA, VanLoocke A, Cho YB, Ort DR.
    Plant Physiol; 2018 Feb 15; 176(2):1215-1232. PubMed ID: 29061904
    [Abstract] [Full Text] [Related]

  • 18. Photosynthetic activity in relation to a gradient of leaf nitrogen content within a canopy of Siebold's beech and Japanese oak saplings under elevated ozone.
    Watanabe M, Hoshika Y, Inada N, Koike T.
    Sci Total Environ; 2018 Sep 15; 636():1455-1462. PubMed ID: 29913605
    [Abstract] [Full Text] [Related]

  • 19. Solar-induced chlorophyll fluorescence captures the effects of elevated ozone on canopy structure and acceleration of senescence in soybean.
    Wu G, Guan K, Ainsworth EA, Martin DG, Kimm H, Yang X.
    J Exp Bot; 2024 Jan 01; 75(1):350-363. PubMed ID: 37702411
    [Abstract] [Full Text] [Related]

  • 20. Impact of elevated ozone on yield and carbon-nitrogen content in soybean cultivar 'Jake'.
    Tisdale RH, Zentella R, Burkey KO.
    Plant Sci; 2021 May 01; 306():110855. PubMed ID: 33775362
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.